
CS 4400: Computer Systems
Problem Set 20

1. Problem 9.16 from the textbook.

2. Consider an allocator that uses an implicit free list. Each memory block, either allocated or
free, has a size that is a multiple of eight bytes, has a four-byte header, and has a four-byte
footer. Only the 29 higher-order bits in the header and footer are needed to record block size,
which includes the header and footer and is represented in units of bytes. The usage of the
remaining three lower-order bits is as follows:

• bit 0 indicates the use of the current block: 1 for allocated, 0 for free.

• bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.

• bit 2 is unused and is always set to 0.

Five helper routines are defined to facilitate the implementation of free(void* p). The func-
tionality of each routine is explained in the comment above the function definition. Choose
the code fragment, that implements the corresponding functionality correctly.

/* Given a pointer p to an allocated block, i.e., p is a pointer returned by some

previous malloc()/realloc() call, returns the pointer to the header of the block.

*/

void* header(void* p) {

void* ptr;

_______;

return ptr;

}

A. ptr = p - 1

B. ptr = (void*)((int*)p - 1)

C. ptr = (void*)((int*)p - 4)

/* Given a pointer to a valid block header or footer, returns the size of the block.

*/

int size(void* hp) {

int result;

_______;

return result;

}

A. result = (*hp) & (~7)

B. result = ((*(char*)hp) & (~5)) << 2

C. result = (*(int*)hp) & (~7)

/* Given a pointer p to an allocated block, i.e., p is a pointer returned by some

previous malloc()/realloc() call, returns the pointer to the footer of the block.

*/

void* footer(void* p) {

void* ptr;

_______;

return ptr;

}

A. ptr = (char*)p + size(header(p)) - 8

B. ptr = (char*)p + size(header(p)) - 4

C. ptr = (int*)p + size(header(p)) - 2

/* Given a pointer to a valid block header or footer, returns the usage of the

current block, 1 for allocated, 0 for free.

*/

int allocated(void* hp) {

int result;

______;

return result;

}

A. result = (*(int*)hp) & 1

B. result = (*(int*)hp) & 0

C. result = (*(int*)hp) | 1

/* Given a pointer to a valid block header, returns the pointer to the header of

previous block in memory.

*/

void* prev(void* hp) {

void* ptr;

______;

return ptr;

}

A. ptr = (char*)hp - size(hp)

B. ptr = (char*)hp - size(hp - 4)

C. ptr = (char*)hp - size(hp - 4) + 4

3. Consider an allocator that uses an explicit free list. The layout of each allocated memory
block is as follows.

! !

!"#$%&'()*&+(,&-./*'0&!"#$"%

12 3&&&&&2&&&&&4

The layout of each free memory block is as follows.

! !

!"#$%&'()*&+(,&-./*'0&

!"#$%&'()*&+(,&-./*'0&

!"#$"%

&''("%

1#(,/*2&/#&32*4(#5'&62**&-"#$%&+(,&7882*''*20&

1#(,/*2&/#&,*9/&62**&-"#$%&+(,&7882*''*20&

:; <&&&&&;&&&&&=

Each memory block, either allocated or free, has a size that is a multiple of eight bytes. Thus,
only the 29 higher order bits in the header (and footer, if a free block) are needed to record
block size, which includes the header (and footer, if a free block). The usage of the remaining
three lower order bits is as follows.

• bit 0 indicates the use of the current block: 1 for allocated, 0 for free.

• bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.

• bit 2 indicates the use of the next adjacent block: 1 for allocated, 0 for free.

Given the contents of the heap shown on the left, what are the new contents of the heap
(in the right table) after a call to free(0x400b010) is executed? Your answer should be the
contents of each cell in the table on the right, expressed as hex values. E.g., “After a call to
free(0x400b010), the value 0x is stored at address 0x400b028.”

Note that the addresses grow from bottom up. Assume that the allocator uses immediate
coalescing, that is, adjacent free blocks are merged immediately each time a block is freed.
Also assume that any blocks not shown here are allocated.

Address

0x400b028 0x00000016

0x400b024 0x400c000

0x400b020 0x400b000

0x400b01c 0x00000016

0x400b018 0xffffffff

0x400b014 0xffffffff

0x400b010 0xffffffff

0x400b00c 0x00000011

0x400b008 0x00000016

0x400b004 0x400b020

0x400b000 0x400af98

0x400affc 0x00000016

Address

0x400b028

0x400b024

0x400b020

0x400b01c

0x400b018

0x400b014

0x400b010

0x400b00c

0x400b008

0x400b004

0x400b000

0x400affc

