
NAME: UID:

CS 4400: Computer Systems

Final Exam
Fall 2010

Please give your solutions in the space provided on the exam. If you choose to show your work on
the exam, be sure to clearly indicate your final solution to each problem.

The exam is open-book, but closed-notes. In addition, no laptops, calculators, cell phones,
or other electronic devices are allowed.

The point value of each question is clearly marked, so allocate your time wisely. The exam is worth
a total of 100 points.

You must complete all work by 3p, there are no exceptions.

Make sure that you have 16 numbered pages.

1

Problem 1 / 16 points

Problem 2 / 14 points

Problem 3 / 12 points

Problem 4 / 15 points

Problem 5 / 9 points

Problem 6 / 6 points

Problem 7 / 6 points

Problem 8 / 12 points

Problem 9 / 10 points

Total / 100 points

2

/ 16 points

1. The following problem concerns the way virtual addresses are translated into physical ad-
dresses.

• The memory is byte addressable.

• Memory accesses are to 1-byte words (not 4-byte words).

• Virtual addresses are 16 bits wide.

• Physical addresses are 13 bits wide.

• The page size is 512 bytes.

• The TLB is 8-way set associative with 16 total entries.

• The cache is 2-way set associative, with a block size of 4 bytes and a capacity of 64
bytes.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB,
the page table (only the first 32 pages), and the cache are as follows.

TLB

Index Tag PPN Valid

0 09 4 1
12 2 1
10 0 1
08 5 1
05 7 1
13 1 0
10 3 0
18 3 0

1 04 1 0
0C 1 0
12 0 0
08 1 0
06 7 0
03 1 0
07 5 0
02 2 0

Page Table

VPN PPN Valid VPN PPN Valid

00 6 1 10 0 1
01 5 0 11 5 0
02 3 1 12 2 1
03 4 1 13 4 0
04 2 0 14 6 0
05 7 1 15 2 0
06 1 0 16 4 0
07 3 0 17 6 0
08 5 1 18 1 1
09 4 0 19 2 0
0A 3 0 1A 5 0
0B 2 0 1B 7 0
0C 5 0 1C 6 0
0D 6 0 1D 2 0
0E 1 1 1E 3 0
0F 0 0 1F 1 0

3

2-way Set Associative Cache

Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 19 1 99 11 23 11 00 0 99 11 23 11
1 15 0 4F 22 EC 11 2F 1 55 59 0B 41
2 1B 1 00 02 04 08 0B 1 01 03 05 07
3 06 0 84 06 B2 9C 12 0 84 06 B2 9C
4 07 0 43 6D 8F 09 05 0 43 6D 8F 09
5 0D 1 36 32 00 78 1E 1 A1 B2 C4 DE
6 11 0 A2 37 68 31 00 1 BB 77 33 00
7 16 1 11 C2 11 33 1E 1 00 C0 0F 00

(a) The box below shows the format of a virtual address. Indicate (by labeling the diagram)
the fields that would be used to determine the following.

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index
TLBT The TLB tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(b) The box below shows the format of a physical address. Indicate (by labeling the diagram)
the fields that would be used to determine the following.

PPO The physical page offset
PPN The physical page number
CO The block offset within the cache line
CI The cache index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

4

(c) Give the format of the virtual address.

Virtual address: 31DE

Virtual address format (one bit per box)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(d) For the given virtual address, fill in the following table. If there is a page fault, enter
”–” for ”PPN”.

Address translation

Parameter Value

VPN 0x

TLB Index 0x

TLB Tag 0x

TLB Hit? (Y/N)

Page Fault? (Y/N)

PPN 0x

(e) If there is a page fault, leave this part blank. Otherwise, indicate the format of the
physical address.

Physical address format (one bit per box)
12 11 10 9 8 7 6 5 4 3 2 1 0

(f) If there is a page fault, leave this part blank. Otherwise, fill in the following table. If
there is a cache miss, enter ”–” for ”Cache Byte returned”.

Physical memory reference

Parameter Value

Byte offset 0x

Cache Index 0x

Cache Tag 0x

Cache Hit? (Y/N)

Cache Byte returned 0x

5

/ 14 points

2. Consider an allocator that uses an implicit free list. The layout of each allocated and free
memory block is as follows.

31 2 1 0

Header | Block Size (bytes) | |

|____________________________|_____|

| |

| |

| |

| |

| |

|__________________________________|

Footer | Block Size (bytes) | |

|____________________________|_____|

Each memory block, either allocated or free, has a size that is a multiple of eight bytes. Thus,
only the 29 higher order bits in the header and footer are needed to record block size, which
includes the header and footer. The usage of the remaining 3 lower order bits is as follows.

• bit 0 indicates the use of the current block: 1 for allocated, 0 for free.

• bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.

• bit 2 indicates the use of the next adjacent block: 1 for allocated, 0 for free.

Given the contents of the heap shown on the left side of the next page, show the new con-
tents of the heap (in the table provided on the right side of the next page) after a call to
free(0x400b010) is executed. Your answers should be given as hex values (feel free to omit
leading zeros). Note that the address grows from bottom up. Assume that the allocator uses
immediate coalescing, that is, adjacent free blocks are merged immediately each time a block
is freed. Also assume that any blocks not shown are allocated.

6

Address

0x400b030 0x00000017

0x400b02c 0x00000002

0x400b028 0x00000001

0x400b024 0x00000017

0x400b020 0x0000001d

0x400b01c 0xfffffffc

0x400b018 0xfffffffd

0x400b014 0xfffffffe

0x400b010 0xffffffff

0x400b00c 0x0000001d

0x400b008 0x00000016

0x400b004 0x200b601c

0x400b000 0x800b511c

0x400affc 0x00000016

Address

0x400b030

0x400b02c

0x400b028

0x400b024

0x400b020

0x400b01c

0x400b018

0x400b014

0x400b010

0x400b00c

0x400b008

0x400b004

0x400b000

0x400affc

7

/ 12 points

3. Consider an allocator that uses an implicit free list. Each memory block, either allocated or
free, has a size that is a multiple of eight bytes. Thus, only the 29 higher order bits in the
header and footer are needed to record block size, which includes the header and footer and
is represented in units of bytes. The usage of the remaining 3 lower order bits is as follows:

• bit 0 indicates the use of the current block: 1 for allocated, 0 for free.

• bit 1 indicates the use of the previous block: 1 for allocated, 0 for free.

• bit 2 indicates the use of the next block: 1 for allocated, 0 for free.

Three helper routines are defined to facilitate the implementation of free(void* p). The
functionality of each routine is explained in the comment above the function definition. Circle
Yes or No to indicate whether the body of the function correctly implements the functionality
described. If you circle No, rewrite the code such that it is correct.

Note that an int requires four bytes.

/* Given a pointer to a valid block header or footer, returns the size of the

block (number of bytes). */

int size(void* hp) {

return (*hp) & (~0x7); /* Correct? */

}

Circle one: Yes or No

Rewritten line of code:

/* Given a pointer p to an allocated block, i.e,. p is a pointer returned by

a previous malloc/realloc call; returns a pointer to the block’s footer. */

void* footer(void* p) {

return (char*)p + size((char*)p - 4) - 8; /* Correct? */

}

Circle one: Yes or No

Rewritten line of code:

/* Given a pointer to a valid block header or footer, returns the usage of

the previous block, 1 for allocated, 0 for free. */

int prev_allocated(void* hp) {

return (*(int*)hp) & 0x4; /* Correct? */

}

Circle one: Yes or No

Rewritten line of code:

8

/ 15 points

4. Using the space provided, answer each of the following questions about threads. Try to be
concise—a short, correct answer will receive more points than a long, rambling answer that
contains the correct information hidden within it.

(a) A context switch between two threads in the same process is faster than a context switch
between two processes.

i. Explain why.

ii. Assume that you are running a badly programmed version of UNIX in which con-
text switches between threads are actually slower than context switches between
processes. Describe a situation in which you, as a programmer, would still prefer to
use multiple threads as opposed to multiple processes.

(b) A global variable is “shared” if it is accessed by more than one thread during the exe-
cution of a program. Recall that most of the time, a thread should only access a shared
global variable while holding the lock that protects that variable.

i. Describe a situation in which a correct program would not need to hold any lock
while accessing a shared global variable.

9

ii. Explain why it is critical that each of the P and V operations on a semaphore occur
indivisibly.

(c) Consider two multi-threaded web servers. Server A creates a new thread for each incom-
ing connection. Server B, on the other hand, pre-creates a fixed pool of threads (eight,
for example) at startup time and uses these to handle all connections. First, describe a
workload that will cause A to perform better than B. Second, describe a workload that
will cause B to perform better than A. In each case, explain why there is a difference in
performance. We say that a web server performs better than another if it handles more
requests per second.

10

/ 9 points

5. Consider the following three programs, which attempt to use three semaphores, a, b, and c,
for mutual exclusion.

Program 1 Initially, a is 1, b is 1, and c is 1.

Thread 1 Thread 2
P(a) P(c)
P(b) P(a)
P(c) V(c)
V(a) P(b)
V(b) V(a)
V(c) V(b)

Circle one of the following outcomes. When Program 1 executes, deadlock:

always occurs might occur never occurs

Program 2 Initially, a is 1, b is 1, and c is 1.

Thread 1 Thread 2
P(a) P(a)
P(b) V(a)
P(c) P(c)
V(a) P(b)
V(b) V(c)
V(c) V(b)

Circle one of the following outcomes. When Program 2 executes, deadlock:

always occurs might occur never occurs

Program 3 Initially, a is 1, b is 1, and c is 1.

Thread 1 Thread 2
P(a) P(b)
P(c) P(a)
V(c) P(c)
V(a) V(a)
P(b) V(c)
V(b) V(b)

Circle one of the following outcomes. When Program 3 executes, deadlock:

always occurs might occur never occurs

11

/ 6 points

6. Match each IA32 assembly routine on the left with the equivalent C function on the right.

foo1:

pushl %ebp

movl %esp,%ebp

movl 8(%ebp),%eax

sall $4,%eax

subl 8(%ebp),%eax

movl %ebp,%esp

popl %ebp

ret

foo2:

pushl %ebp

movl %esp,%ebp

movl 8(%ebp),%eax

testl %eax,%eax

jge .L4

addl $15,%eax

.L4:

sarl $4,%eax

movl %ebp,%esp

popl %ebp

ret

foo3:

pushl %ebp

movl %esp,%ebp

movl 8(%ebp),%ecx

xorl %eax,%eax

testl %ecx,%ecx

jge .L6

incl %eax

.L6

movl %ebp,%esp

popl %ebp

ret

int choice1(int x) {

return (x < 0);

}

int choice2(int x) {

return (x << 31) & 1;

}

int choice3(int x) {

return 15 * x;

}

int choice4(int x) {

return (x + 15) / 4;

}

int choice5(int x) {

return x / 16;

}

int choice6(int x) {

return (x >> 31);

}

Assembler routine foo1 corresponds to C function .

Assembler routine foo2 corresponds to C function .

Assembler routine foo3 corresponds to C function .

12

/ 6 points

7. Consider the following code fragment containing the incomplete definition of a data type
struct matrix entry with four fields.

struct matrix_entry{

_________ a;

_________ b;

short c;

_________ d;

};

Also consider the following C code and assembly code.

struct matrix_entry matrix[2][5];

short return_entry(int i, int j) {

return matrix[i][j].c;

}

return_entry:

pushl %ebp

movl %esp,%ebp

movl 8(%ebp),%eax

leal (%eax,%eax,4),%eax

addl 12(%ebp),%eax

sall $4,%eax

movl matrix+6(%eax),%eax

movl %ebp,%esp

popl %ebp

ret

Complete the definition of struct matrix entry so that the assembly code could be gener-
ated for function return entry on a Linux/x86 machine.

• Note that there are multiple correct answers.

• Choose your answers from the following types, assudming these sizes and alignments.

Type Size (bytes) Alignment (bytes)

char 1 1
short 2 2
int 4 4

double 8 4

13

/ 12 points

8. This problem concerns the run-time stack for the following C functions.

/* copy string x to buf */

void foo(char *x) {

int buf[1];

strcpy((char *)buf, x);

}

void callfoo() {

foo("abcdefghi");

}

Functions foo and callfoo have the following disassembled form on an IA32 machine.

080484f4 <foo>:

080484f4: 55 pushl %ebp

080484f5: 89 e5 movl %esp,%ebp

080484f7: 83 ec 18 subl $0x18,%esp

080484fa: 8b 45 08 movl 0x8(%ebp),%eax

080484fd: 83 c4 f8 addl $0xfffffff8,%esp

08048500: 50 pushl %eax # push x

08048501: 8d 45 fc leal 0xfffffffc(%ebp),%eax

08048504: 50 pushl %eax # push buf

08048505: e8 ba fe ff ff call 80483c4 <strcpy>

0804850a: 89 ec movl %ebp,%esp

0804850c: 5d popl %ebp

0804850d: c3 ret

08048510 <callfoo>:

08048510: 55 pushl %ebp

08048511: 89 e5 movl %esp,%ebp

08048513: 83 ec 08 subl $0x8,%esp

08048516: 83 c4 f4 addl $0xfffffff4,%esp

08048519: 68 9c 85 04 08 pushl $0x804859c # push string address

0804851e: e8 d1 ff ff ff call 80484f4 <foo>

08048523: 89 ec movl %ebp,%esp

08048525: 5d popl %ebp

08048526: c3 ret

14

Note the following:

• strcpy(char *dst, char *src) copies the string at address src (including the ter-
minating ‘\0’ character) to address dst. It does not check the size of the destination
buffer.

• IA32 machines are little endian.

• C strings are null-terminated (i.e., terminated by a character with value 0x00).

• Characters ‘a’ through ‘i’ have ASCII codes 0x61 through 0x69.

Consider what happens on an IA32 machine when callfoo calls foo with the input string
“abcdefghi”.

(a) List the contents of the following memory locations immediately after strcpy returns to
foo. Each answer should be an unsigned 4-byte integer expressed as 8 hex digits. (Note
that buf[x] is simply the contents in memory at address buf + 4x.)

buf[0] = 0x

buf[1] = 0x

buf[2] = 0x

(b) Immediately before the ret instruction at address 0x0804850d executes, what is the
value of the frame pointer register %ebp?

%ebp = 0x

(c) Immediately after the ret instruction at address 0x0804850d executes, what is the value
of the program counter register %eip?

%eip = 0x

15

/ 10 points

9. Consider the following C program. Assume that all functions return normally and that the
proper header files have been included.

int main() {

int status;

printf("start\n");

printf("%d\n", !fork());

if(wait(&status) != -1)

printf("%d\n", WEXITSTATUS(status));

printf("end\n");

exit(2);

}

Recall the following :

• Function wait returns -1 when there is an error, e.g., when there is no child.

• Macro WEXITSTATUS extracts the exit status of the terminating process.

(a) Draw a diagram that illustrates the processes at run-time.

(b) Give three possible outputs of this program.

16

