CS 4400

Computer Systems

LECTURE 9

Structs and alignment

Buffer overflow

New to C?: Structures

In C, a user-defined type 1s accomplished with a st r uct .

Example: struct el ement {
char nane[10];
char synbol [5] ;
fl oat wei ght;
fl oat nass;

};

The new type 1s st ruct el enent.

Declaration of a structure variable
struct el enent el:

allocates contiguous storage for all structure members.

atleast 10+ 5+2 *si zeof (fl oat) bytes
CS 4400—Lecture 9 2

More on Structures

e To access a member of the structure variable, use the

dot. operator. el. mass = 3.0;
strcpy(el. nane, “hydrogen”);

 Usetypedef to avoid the awkward two-word type.

t ypedef struct el enent {
char nane[10];
char synbol [5];
fl oat wei ght;
fl oat mass;
} ELT;

ELT el;

 What is the difference in a structure and an array?

CS 4400—Lecture 9 3

Pointers to Structures

e As with objects in C++, the pointer operator - > can be

used with pointers to structures.

ELT el;

ELT* elt ptr = ⪙

printf(“%”, (*elt _ptr).synbol);
printf(“%”, elt _ptr->synbol);

e A self-referential structure has a member that 1s a pointer

of the same type as the structure 1tself.

t ypedef struct node {
| nt dat a;
struct node* next:
} NODE;
X->next - >next - >data ...

CS 4400—Lecture 9 4

Structs

e The compiler maintains information about each structure.

 1ndicating byte offset of each field

e Example: struct rec {

int 1,
Int |;
I nt af 3];
I nt* p;
¥
0 4 8 20
24 bytes: i j a[0] a[1] a[?2] P

e Generated code adds the appropriate offset.
e suppose r (typestruct rec *)isin %edx, to copy element

r->i toelementr->j: movl (%edx), Yeax

novl %eax, 4(Yedx)
CS 4400—Lecture 9

Exercise: Structs

struct prob {
| nt* p;
struct {
| Nt X;
I nt vy;
} s,
struct prob* next;

} ’
void sp_init(struct prob* sp) {

Sp->S. X =

sp->p =

Sp- >next = :

}

nov|
nov|
novl
| eal
novl
novl

8(Yebp) , Yeax
8(Y%eax) , Yedx
Yedx, 4(Yeax)
4(Y%eax) , Yedx
Yedx, (Yeax)
Yeax, 12(Yeax)

e Offset of each field? Total number of bytes?

 Fill in function, given assembly code for its body.

CS 4400—Lecture 9

Clicker Question

If you have ResponseCard clicker, channel is 41.

If you are using ResponseWare, session id is CS1400U.

What 1s the offset of field f mmstruct d ?

A. 0

struct a {
B. 4 | nt b;

I nt c;

C. 8).
D. 12

struct d {
E. 16 struct a* e;
F. none of the above \- float f;

CS 4400—Lecture 9 7

New to C?: Unions

Unions provide a way for a single object to be referenced

according to multiple types.

Example: uni on u {
char c;
int i[2];
doubl e v;
}oXx;
X.Vv = 4.5;
printf(“% %\n”, x.1[0], x.i[1]);

si zeof (uni on u) is the max size of any of its fields.

Technically, you should only read the variant you wrote.

CS 4400—Lecture 9 8

Unions
e The byte offset of each field 1s 0.

e Example: union rec {
char c;
int i[2]:
doubl e v;
b 8 bytes

* Assembly code lacks any information about type.

unsi gned f2u(float f) {
uni on {
float f;
unsi gned u;
} tenp;
temp.f = f;
return tenp. u;

novl 8(%ebp), Yeax

}

CS 4400—Lecture 9

Alignment

e Many systems restrict the addresses allowed for primitive

types—they must be a multiple of .

e Alignment restrictions simplify the interface between

processor and memory.

e avoids an 4-byte i nt straddling two 4-byte memory blocks

e Linux/IA32 alignment policy:
e addresses of 1-byte data types are not restricted
 addresses of 2-byte data types must be multiples of 2

 addresses of larger data types must be multiples of 4

CS 4400—Lecture 9 10

Struct Alignment

* The compiler may need to insert gaps in field allocation

to ensure each structure element 1s aligned.

e Example: struct Sl {

I nt I ;
char c;
Int | ;
b
0 4 5
9 bytes (unaligned): i cl |
0 4 5 8
12 bytes (aligned): i C|XXX| |

* [s a gap required if we make char c the third field?

CS 4400—Lecture 9 11

Exercise: Struct Alignment

Given the Linux/IA32 alignment policy, how 1s each

structure aligned?

estruct P1 { int i; char c; int j; char d; };
estruct P2 { int i; char c; char d; int j };
estruct P3 { short w3]; char c[3]; }
e struct P4 { short W 3]; char* c[3]; }

estruct P5 { struct Pl a[2]; struct P2 *p };

CS 4400—Lecture 9 12

Clicker Question

Given the Linux/IA32 alignment policy, what 1s the

total number of bytes required for s?
A, 12

st r uct
B. 16 char a[3];
short b;
C. 20 doubl e c:
D. 24 char* d;
}os;
E. 28

F. none of the above

CS 4400—Lecture 9 13

Clicker Question

If reordering of fields 1s allowed, 1s 1t possible to avoid

padding at all in s? struct {
A char af[3];
- YOS short b;
B no doubl e c;
char* d;
C. Idon't know }s;

CS 4400—Lecture 9 14

Out-of-Bounds Memory References

e C does no bounds checking for array references.

* Do any programming languages perform bounds checking?

 Recall that the run-time stack 1s used to store local

variables, as well as, register values and return address.

 What happens when an out-of-bounds element of a local

array 1s written?
e program ‘“‘state” is potentially corrupted

e examples?

CS 4400—Lecture 9 15

Buftter Overflow

e A common source of state corruption.

e Typically: A char array 1s allocated to the stack, but a

string 1s written which exceeds the allocated space.

char* gets(char* s) {

int c; char* dest = s;

whil e((c=getchar()) !'="\n" & c !'= EOF)
*dest ++ = c;

*dest = '"\0';

| f(c == EOF)
return NULL;

return s;

} Any potential problems

void echo() { with get S?
char buf[4];
get s(buf);
put s(buf);

Example: Butter Overflow

echo:
pushl %ebp , save to stack -
novl %esp, Yebp ,set new fr_ptr VotﬂaECB8§%4}.
subl $20, %esp ;al |l oc space get s(buf): ’
pushl % ebx ; save to stack puts(buf):
addl $-12, %esp ;all oc nore space ’
| eal -4(%bp), %ebx ; buf is %bp-4
pushl %ebx , push buf
call gets

e What values of buf will corrupt
the saved value of %ebp?

e What values will corrupt the
return address?

return address

saved ¥%ebp <« “&bp
[3][2][1][0] buf

» How can buftfer overflow be
avolded 1n this example?

echo's frame

CS 4400—Lecture 9 17

owIeIJ S J9[[ed

Exploit Code

 When the byte encoding of executable code is fed into a
program as an input string, buffer overflow can be used

to get a program do something 1t otherwise would not.
» Also include extra bytes to overwrite the return address with the
address of this exploit code.

* The effect of r et 1s to jump to (and execute) the exploit code.

e In Lab 3, you will get first-hand experience mounting a

buffer-overflow attack.
» Requires deep understanding of run-time stack organization,

byte ordering, and instruction encoding.
CS 4400—Lecture 9 18

Exercise: Bufter Overtlow

char* getline() { Disassembly of get | i ne: 0 osi
char buf[8]; push %ebp Ox1
char* result; nov %esp, Y%ebp
get s(buf); sub $0x10, %esp %ebx
result = malloc(strlen(buf)+1); Push %esi 0x2
strcpy(result, buf); push %ebx
return result; add $Oxfffffff4, %esp

} | ea Oxfffffff8(%bp), Yebx

push %ebx
08 04 86 43 return address SEI U EEIS oo

Yebp— bf ff fc 94 saved ¥ebp

e [f input1s 012345678901,

program terminates with seg-fault.
Error occurs during return of get | | ne.

e Fill in stack just before add, and
then after call to get s.

* To where does the program try to return?

 What registers have corrupted values?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

