
CS 4400

Computer Systems

LECTURE 9

Structs and alignment

Buffer overflow

New to C?: Structures

CS 4400—Lecture 9 2

● In C, a user-defined type is accomplished with a struct.

● Example: struct element {
 char name[10];
 char symbol[5];
 float weight;
 float mass;
};

● The new type is struct element.

● Declaration of a structure variable

struct element e1;

allocates contiguous storage for all structure members.
at least 10 + 5 + 2 * sizeof(float) bytes

More on Structures

CS 4400—Lecture 9 3

● To access a member of the structure variable, use the

dot . operator. e1.mass = 3.0;
strcpy(e1.name, “hydrogen”);

● Use typedef to avoid the awkward two-word type.
typedef struct element {
 char name[10];
 char symbol[5];
 float weight;
 float mass;
} ELT;

ELT e1;

● What is the difference in a structure and an array?

Pointers to Structures

CS 4400—Lecture 9 4

● As with objects in C++, the pointer operator -> can be

used with pointers to structures.
ELT e1;
ELT* elt_ptr = &e1;
printf(“%s”, (*elt_ptr).symbol);
printf(“%s”, elt_ptr->symbol);

● A self-referential structure has a member that is a pointer

of the same type as the structure itself.
typedef struct node {
 int data;
 struct node* next;
} NODE;
... x->next->next->data ...

● The compiler maintains information about each structure.
● indicating byte offset of each field

● Example: struct rec {
 int i;
 int j;
 int a[3];
 int* p;
};

 0 4 8 20

24 bytes: i j a[0] a[1] a[2] p

● Generated code adds the appropriate offset.
● suppose r (type struct rec *) is in %edx, to copy element

 r->i to element r->j: movl (%edx),%eax
movl %eax,4(%edx)

Structs

CS 4400—Lecture 9 5

Exercise: Structs
struct prob {
 int* p;
 struct {
 int x;
 int y;
 } s;
 struct prob* next;
};

void sp_init(struct prob* sp) {

 sp->s.x = _______________ ;

 sp->p = _________________ ;

 sp->next = ______________ ;
}

movl 8(%ebp),%eax
movl 8(%eax),%edx
movl %edx,4(%eax)
leal 4(%eax),%edx
movl %edx,(%eax)
movl %eax,12(%eax)

● Offset of each field? Total number of bytes?

● Fill in function, given assembly code for its body.
CS 4400—Lecture 9 6

Clicker Question

CS 4400—Lecture 9 7

What is the offset of field f in struct d ?

A. 0

B. 4

C. 8

D. 12

E. 16

F. none of the above

If you have ResponseCard clicker, channel is 41.

If you are using ResponseWare, session id is CS1400U.

struct a {
 int b;
 int c;
};

struct d {
 struct a* e;
 float f;
};

New to C?: Unions

CS 4400—Lecture 9 8

● Unions provide a way for a single object to be referenced

according to multiple types.

● Example: union u {
 char c;
 int i[2];
 double v;
} x;
x.v = 4.5;
printf(“%d %d\n”, x.i[0], x.i[1]);

● sizeof(union u) is the max size of any of its fields.

● Technically, you should only read the variant you wrote.

unsigned f2u(float f) {
 union {
 float f;
 unsigned u;
 } temp;
 temp.f = f;
 return temp.u;
}

● The byte offset of each field is 0.

● Example: union rec {
 char c;
 int i[2];
 double v;
}; 8 bytes

● Assembly code lacks any information about type.

Unions

movl 8(%ebp),%eax

CS 4400—Lecture 9 9

● Many systems restrict the addresses allowed for primitive

types—they must be a multiple of k.

● Alignment restrictions simplify the interface between

processor and memory.
● avoids an 4-byte int straddling two 4-byte memory blocks

● Linux/IA32 alignment policy:
● addresses of 1-byte data types are not restricted

● addresses of 2-byte data types must be multiples of 2

● addresses of larger data types must be multiples of 4

Alignment

CS 4400—Lecture 9 10

● The compiler may need to insert gaps in field allocation

to ensure each structure element is aligned.

● Example: struct S1 {
 int i;
 char c;
 int j;
};

 0 4 5

9 bytes (unaligned): i c j

 0 4 5 8

12 bytes (aligned): i c XXX j

● Is a gap required if we make char c the third field?

Struct Alignment

CS 4400—Lecture 9 11

Given the Linux/IA32 alignment policy, how is each

structure aligned?

● struct P1 { int i; char c; int j; char d; };

● struct P2 { int i; char c; char d; int j };

● struct P3 { short w[3]; char c[3]; }

● struct P4 { short w[3]; char* c[3]; }

● struct P5 { struct P1 a[2]; struct P2 *p };

Exercise: Struct Alignment

CS 4400—Lecture 9 12

Clicker Question

CS 4400—Lecture 9 13

Given the Linux/IA32 alignment policy, what is the

total number of bytes required for s?

A. 12

B. 16

C. 20

D. 24

E. 28

F. none of the above

struct {
 char a[3];
 short b;
 double c;
 char* d;
} s;

Clicker Question

CS 4400—Lecture 9 14

If reordering of fields is allowed, is it possible to avoid

padding at all in s?

A. yes

B. no

C. I don't know

struct {
 char a[3];
 short b;
 double c;
 char* d;
} s;

● C does no bounds checking for array references.
● Do any programming languages perform bounds checking?

● Recall that the run-time stack is used to store local

variables, as well as, register values and return address.

● What happens when an out-of-bounds element of a local

array is written?
● program “state” is potentially corrupted

● examples?

Out-of-Bounds Memory References

CS 4400—Lecture 9 15

● A common source of state corruption.

● Typically: A char array is allocated to the stack, but a

string is written which exceeds the allocated space.

Buffer Overflow

char* gets(char* s) {
 int c; char* dest = s;
 while((c=getchar()) != '\n' && c != EOF)
 *dest++ = c;
 *dest = '\0';
 if(c == EOF)
 return NULL;
 return s;
}

void echo() {
 char buf[4];
 gets(buf);
 puts(buf);
}

Any potential problems
with gets?

Example: Buffer Overflow

CS 4400—Lecture 9 17

echo:
 pushl %ebp ;save to stack
 movl %esp,%ebp ;set new fr_ptr
 subl $20,%esp ;alloc space
 pushl %ebx ;save to stack
 addl $-12,%esp ;alloc more space
 leal -4(%ebp),%ebx ;buf is %ebp-4
 pushl %ebx ;push buf
 call gets

return address
saved %ebp

[3][2][1][0]

%ebp

buf

. . .

. . .

. . .

e
c
h
o
's

 f
ra

m
e

ca
lle

r 's fra
m

e

● What values of buf will corrupt
 the saved value of %ebp?

● What values will corrupt the
 return address?

● How can buffer overflow be
 avoided in this example?

void echo() {
 char buf[4];
 gets(buf);
 puts(buf);
}

● When the byte encoding of executable code is fed into a

program as an input string, buffer overflow can be used

to get a program do something it otherwise would not.
● Also include extra bytes to overwrite the return address with the

address of this exploit code.

● The effect of ret is to jump to (and execute) the exploit code.

● In Lab 3, you will get first-hand experience mounting a

buffer-overflow attack.
● Requires deep understanding of run-time stack organization,

byte ordering, and instruction encoding.

Exploit Code

CS 4400—Lecture 9 18

char* getline() {
 char buf[8];
 char* result;
 gets(buf);
 result = malloc(strlen(buf)+1);
 strcpy(result, buf);
 return result;
}

Exercise: Buffer Overflow

● If input is 012345678901,
 program terminates with seg-fault.
 Error occurs during return of getline.

● Fill in stack just before add, and
 then after call to gets.

● To where does the program try to return?

● What registers have corrupted values?

08 04 86 43 return address
bf ff fc 94 saved %ebp

Disassembly of getline:
push %ebp
mov %esp, %ebp
sub $0x10,%esp
push %esi
push %ebx
add $0xfffffff4,%esp
lea 0xfffffff8(%ebp),%ebx
push %ebx
... call gets ...

0x1
%esi

0x2
%ebx

%ebp→

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

