
CS 4400

Computer Systems

LECTURE 5

Machine-level code

Accessing information

Arithmetic and logical operations

Machine-Level Rep of Programs

CS 4400—Lecture 5 2

● High-level PLs shield us from machine-level details

(expressed in the assembly-code program).
● exactly how memory is managed

● the low-level instructions used to carry out computation

● It is the job of a compiler to translate high-level programs

to assembly code, so why must we understand it?
● to analyze underlying inefficiencies in the code

● to learn about the (hidden) run-time behavior of a program

● We will focus on how C programs are translated to

assembly code using the IA32 (aka x86) instruction set.

Machine-Level Code

CS 4400—Lecture 5 3

● Assembly code is very close to machine code.
● but in a (more readable) text format, instead of binary

● Parts of processor state (hidden from high-level PL):
● program counter %eip, gives address of next instruction

● integer register file, 8 named locations for 32-bit values

● floating-pt register file, 8 locations for floating-point data

● A single machine instruction is very simple.
● such as adding two numbers stored in registers, ...

● Compiler must generate sequences of such instructions to

implement high-level constructs (e.g., loops).

Machine-Level View of Memory

CS 4400—Lecture 5 4

● Assembly code views memory simply as a large, byte-

addressable array.
● C arrays and structures are contiguous collections of bytes

● no distinction between signed and unsigned data, pointers and

integers, different types of pointers, ...

● Program memory contains:
● object code for the program

● (some info required by the OS)

● a run-time stack for managing procedure calls and returns

● blocks of memory allocated by the user (via malloc)

Example: Machine-Level Code
int accum = 0;

int sum(int x, int y) {
 int t = x + y;
 accum += t;
 return t;
}

...
sum:
 pushl %ebp
 movl %esp, %ebp
 movl 12(%ebp), %eax
 addl 8(%ebp), %eax
 addl %eax, accum
 movl %ebp, %esp
 popl %ebp
 ret
...

code.c

unix> gcc -S -O2 code.c
unix> ls
code.c code.scode.s

unix> gcc -c -O2 code.c
unix> ls
code.c code.s
code.o

code.o
...55 89 e5 8b 45 0c 03
45 08 01 05 00 00 00 00
89 ec 5d c3...

● Assembly and object code
 from the text, not
 generated in lab1.

● gcc generates assembly
 code in “AT&T” format.

Data Formats

CS 4400—Lecture 5 6

● Because Intel started as a 16-bit architecture,
● “byte” 8-bit data type, instruction suffix is b (e.g., char)

● “word” 16-bit data type, instruction suffix is w (e.g., short)

● “double word” 32-bit data type, insn suffix is l (e.g., int)

● “quad word” 64-bit data type, insn suffix is q (e.g., long)

● An instruction has a suffix denoting the size of the

 operand. (movl: move double word)

● Suffix for single-precision floating point is s, for double

precision suffix is l. Confusion with 4-byte integer?

32-Bit Registers

CS 4400—Lecture 5 7

to access: double word word byte byte

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

%esi %si

%edi %di

%esp %sp

%ebp %bp

“general
purpose”

stack pointer

frame pointer

● 8 registers

● store integer data
 and pointers

● low-order bits may
 be independently
 read/written

● conventions for
 using “general
 purpose” registers
 to be covered

Operand Specifiers

CS 4400—Lecture 5 8

● Most instructions have one or more operands.
● specify source values to reference in performing operation

● specify destination location into which to place the result

● Source values
● immediate (constant), e.g., $-577 or $0x1F

● register, e.g., %eax (double-word op) or %al (byte op)

● memory reference, e.g., 7(%eax) (addr in %eax + 7)

● Destination locations
● register

● memory reference

Addressing Modes

CS 4400—Lecture 5 9

M[addr] denotes the value stored at byte address addr.

R[reg-id] denotes the value of the contents of register reg-id.

● 0x2a3, absolute, M[0x2a3]

● (%eax), indirect, M[R[%eax]]

● 7(%edx), base + displacement, M[7 + R[%edx]]

● (%eax,%ecx), indexed, M[R[%eax] + R[%ecx]]

● 7(%eax,%ecx), indexed, M[7 + R[%eax] + R[%ecx]]

● (,%eax,4), scaled indexed, M[R[%eax] * 4]

● 7(,%eax,4), scaled indexed, M[7 + R[%eax] * 4]

● (%eax,%ecx,4), scaled indexed, M[R[%eax] + R[%ecx] * 4]

● 7(%eax,%ecx,4), scaled indexed, M[7 + R[%eax] + R[%ecx] * 4]

Exercise: Addressing Modes

CS 4400—Lecture 5 10

address value
0x200 0x12
0x204 0x2a
0x208 0xd4
0x20c 0xfd

register value
%eax 0x200
%ecx 0x41
%edx 0x4

operand value

(%edx,%ecx,8)

$0x204

%eax

0x1f8(,%edx,4)

(%eax)

0x208

Data Movement Instructions

CS 4400—Lecture 5 11

● Generality of the operand notation allows a simple move

instruction to perform many different kinds of moves.

● movl src, dest (movw for 16-bit, movb for 8-bit)
● movl $0x4050,%eax ;immediate to register

● movl %ebp,%esp ;register to register

● movl $-17,(%esp) ;immediate to memory

● movl %eax,-12(%ebp) ;register to memory

● IA32 does not allow both operands to be memory

locations. How can we move the contents at address

0xa3 to address 0x7b?

Clicker Question

CS 4400—Lecture 5 12

Is this a valid IA32 instruction?

movb $0xF, (%bl)

A. Yes

B. No

C. I don't know

If you have ResponseCard clicker, channel is 41.

If you are using ResponseWare, session id is CS1400U.

Clicker Question

CS 4400—Lecture 5 13

Is this a valid IA32 instruction?

movw %ax, (%esp)

A. Yes

B. No

C. I don't know

Data Movement to/from Stack

CS 4400—Lecture 5 14

● pushl and popl push data onto and pop data from the

run-time stack. (much more on the stack next week)

● %esp (the stack pointer) holds the address of the top

stack element.

● pushl %ebp is equivalent to:
● subl $4,%esp followed by movl %ebp,(%esp), Why?

● popl %eax is equivalent to:
● movl (%esp),%eax followed by addl $4,%esp, Why?

Exercise: Data Movement

CS 4400—Lecture 5 15

int exchange(int *xp, int y) {
 int x = *xp;
 *xp = y;
 return x;
}

movl 8(%ebp),%eax
movl 12(%ebp),%edx
movl (%eax),%ecx
movl %edx,(%eax)
movl %ecx,%eax

● What does the exchange function do?

● (Instructions for allocating / deallocating the stack frame are

 omitted.)

● When procedure begins, xp and y are stored at offsets 8 and 12

 from the address in %ebp (the frame pointer).

● What do each of the assembly code instructions do?

Load Effective Address

CS 4400—Lecture 5 16

● leal copies the address of the first operand to the

destination (the second operand).

● Can be used to generate pointers.

● Can be used to compactly describe arithmetic operations.
● if register %edx contains value x, the effect of

leal 7(%edx,%edx,4),%eax is to set %eax to 5x+7

● Let %eax hold value x and %ecx hold value y.
● what is the value stored in %edx after instruction

leal 0xa(%eax,%ecx,4),%edx ?

Unary Operations

CS 4400—Lecture 5 17

● One operand (register or memory location) serves as the

source and destination.

● incl %eax, increment value in register %eax by one

● decl (%eax), decrement value at M[R[%eax]] by one

● negl 6(%eax), negate value at M[6 + R[%eax]]

● notl (,%eax,4), complement value at M[R[%eax] * 4]

Binary Operations

CS 4400—Lecture 5 18

● Right operand (register or memory location) serves both

as the first source and the destination.
● Left operand (immed, reg, memory) is the second source.

● Cannot have both operands as memory locations.

● subl %eax,(%ecx)
● M[R[%ecx]] ← value at M[R[%ecx]] - value in register %eax

● addl add, imull multiply, xorl exclusive or, orl or,

andl and

Shift Operations

CS 4400—Lecture 5 19

● First operand indicates by how much to shift.
● immediate between 0 and 31 or in single-byte register %cl

● Second operand is value to shift.

● sall $4,%ecx, left shift value in %ecx by 4

● shll, same as sall

● sarl, arithmetic right shift (fill with copies of MSB)

● shrl, logical right shift (fill with zeros)

Clicker Question

CS 4400—Lecture 5 20

Which of the following is not equivalent to the C function?
int subtract(int x, int y) {

return y – x;
 }

A. movl 8(%ebp), %ecx
movl 12(%ebp), %eax
subl %ecx, %eax

B. movl 8(%ebp), %eax
subl 12(%ebp), %eax

C. movl 12(%ebp), %eax
subl 8(%ebp), %eax

D. All are equivalent.

E. More than one are not equivalent.

Exercise: Arithmetic

CS 4400—Lecture 5 21

int arith(int x, int y, int z) {
 int t1 = x + y;
 int t2 = z * 48;
 int t3 = t1 & 0xffff;
 int t4 = t2 * t3;
 return t4;
}

movl 12(%ebp),%eax
movl 16(%ebp),%edx
addl 8(%ebp),%eax
leal (%edx,%edx,2),%edx
sall $4,%edx
andl $65535,%eax
imull %eax,%edx
movl %edx,%eax

● The values of x, y and z are stored at offsets 8, 12 and

 16 from the address in %ebp.

● Which assembly instruction(s) correspond to each C

 statement?

Special Arithmetic Operations

CS 4400—Lecture 5 22

● The two-operand imull generates a 32-bit product.
● imull src, gives full 64-bit product of %eax and src, 2's comp

● mull src, does the same for unsigned

● both store the result in %edx (high order) and %eax (low order)

● cltd, sign extends the value in %eax to 64-bit
● stores the result in %edx (high order) and %eax (low order)

● idivl src, takes as a dividend the 64-bit value in %edx

(high order) and %eax (low order), src is divisor
● quotient stored in %eax and remainder in %edx

● divl is the same except unsigned

Exercise: Data Movement

CS 4400—Lecture 5 23

movl 8(%ebp),%edi
movl 12(%ebp),%ebx
movl 16(%ebp),%esi
movl (%edi),%eax
movl (%ebx),%edx
movl (%esi),%ecx
movl %eax,(%ebx)
movl %edx,(%esi)
movl %ecx,(%edi)● The values of xp, yp and zp are

 stored at offsets 8, 12 and 16 from the address in

 %ebp.

● Fill in decode1 such that it has an equivalent effect.

void decode1(int *xp, int *yp, int *zp) {
 // FILL IN

}

Exercise: Shift Operations

CS 4400—Lecture 5 24

movl 12(%ebp),%ecx ;move n to %ecx
movl 8(%ebp),%eax ;move x to %eax

?? ;x<<=2

?? ;x>>=n

● Fill in the above assembly code such that it is

 generated from the above C function.

● Right shifts should be arithmetic.

int shift_left2_rightn(int x, int n) {
 x <<= 2;
 x >>= n;
 return x;
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

