
CS 4400

Computer Systems

LECTURE 4

Representing floats

Floating-point arithmetic



Floating Point

CS 4400—Lecture 4      2

●  Floating-point representation encodes rational numbers 

of the form V = x × 2y.
● useful for numbers very large and very close to 0, why?

●  Until the 1980s, there were many different conventions 

for how to represent floats and the operations on them.
● accuracy not biggest concern, what was?

●  Around 1985, IEEE Standard 754 surfaced as a carefully 

crafted standard for floating point.
● by Kahan et al., now supported by virtually all computers



Fractional Numbers

CS 4400—Lecture 4      3

●  Decimal:  d
m
 d

m-1
···d

1  
d

0 
.d

-1  
d

-2
···d

-n
d =  ∑ 10i

 
×

 
d

i

●  Binary:  b
m
 b

m-1
···b

1  
b

0 
.b

-1  
b

-2
···b

-n
b =  ∑ 2i

 
×

 
b

i

●  Example:  101.11
2
 = 22 + 20 + 2-1 + 2-2 = 5 3/4 

●  What is the effect of shifting the binary point right/left?

●  With finite-length encodings, there are decimal (and 

binary) fractions that cannot be represented exactly.

● 1/3 = 0.33333...
10

● 1/5 = 0.001100110011...
2

m

i = –n

i = –n

m



Clicker Question

CS 4400—Lecture 4      4

Represent the value 51/32 as a binary number.

A.    0.010011

B.    0.100101

C.    1.100011

D.    1.100110

E.    It cannot be represented exactly.

F.    I don't know.

If you have ResponseCard clicker, channel is 41.

If you are using ResponseWare, session id is CS1400U.



IEEE Floating-Point Representation

CS 4400—Lecture 4      5

●  Represents a number of the form V = (-1)s × M × 2E

●  s:  sign bit, interpretation for numeric value 0 is special

●  E:  exponent, weights by a power of 2
● k bits (k=8 for single precision, k=11 for double), exp field

●  M:  significand, a fractional binary number 
● ranges [1, 2) or [0, 1), depending on whether the exp field is 0

● n bits (n=23 for single precision, n=52 for double), frac field

●  The value encoded by a given bit representation is 

divided into three cases, depending on the value of exp.



Case 1:  Normalized Values

CS 4400—Lecture 4      6

●  Occurs when bit pattern of exp is neither all 0s nor all 1s.

●  exp field interpreted as a signed integer in biased form
● Bias = 2k-1 – 1

● Let e be the unsigned number represented by bits in exp field.

● The actual exponent value is E = e – (2k-1 – 1).

● For double (k=11), -1022 ≤ E ≤ 1023.  For single (k=8)?

●  frac field interpreted as fractional value 0 ≤ f < 1
● The significand value is M = 1 + f.

● “Implied leading 1” representation gets additional bit for free

● Thus, the range of M is [1,2).



Clicker Question

CS 4400—Lecture 4      7

Recall:  single precision uses 8 exp bits and 23 frac bits

   E = e – (2k-1 – 1),  M = 1 + f,  V = (-1)s × M × 2E

    What is V for 0 01111111 00000000000000000000000?

A.    0

B.    0.5

C.    1

D.    2

E.    It is not a normalized value.



Case 2:  Denormalized Values

CS 4400—Lecture 4      8

●  Occurs when bit pattern of exp is all 0s (numeric value 0).

●  The exponent value is E = 1 – (2k-1 – 1).

●  The significand value is M = f.
● Without “implied leading 1”.

● Thus, the range of M is [0,1).

●  Why have denormalized numbers?
● Can represent numeric value 0.  Why cannot with normalized?

● Can represent numbers very close to 0.  

● Gradual underflow—possible values are spaced evenly near 0.0.



Case 3:  Special Values

CS 4400—Lecture 4      9

●  Occurs when bit pattern of exp is all 1s (numeric value 

255 for single or 2047 for double).

●  When the frac field is all 0s, the resulting value is ∞ 

(positive or negative, depending on s).

●  When the frac field is nonzero, the resulting value is 

called a “NaN” (Not a Number).
● Represents a result that cannot be given as a real number or as    

infinity.



Example:  6-bit Format

CS 4400—Lecture 4      10

Assume a hypothetical 6-bit format with k=3 exponent bits and 

n=2 significand bits.  What is the exponent bias?

–∞ –10 –5 0 +5 +10 +∞

Denormalized Normalized Infinity

–1 –0.8 –0.6 –0.4 –0.2 0 +0.2 +0.4 +0.6 +0.8 +1

+0–0

● What are the normalized numbers with maximum magnitude?
e = ?     E = ?     f = ?       M = ?     V = ?

● Are the representable numbers uniformly distributed?



Exercises:  5-bit Format

CS 4400—Lecture 4      11

Assume a hypothetical 5-bit format with k=2 exponent bits and n=2 

significand bits.  The exponent bias is 2k-1 – 1 = 1.

s e
1
e
0
 f

1
f
0

e   E   f     M       V

0 00  00

0 00  10

0 01  01

0 10  11

0 11  00

0 11  10



Properties of IEEE Floating Point

CS 4400—Lecture 4      12

●  The value +0.0 always has a bit pattern of all 0s.

●  The smallest denormalized value > 0 has a bit pattern 

consisting of 1 in LSB and all 0s elsewhere.
● M = f = 2-n, E = 1 – (2k-1 – 1) =  – 2k-1 + 2

● V = M × 2E =  2^(-n-2k-1+2)

●  The largest denormalized value has a bit pattern 

consisting of an all-0 exp field and an all-1 frac field. 
● M = f = 1 – epsilon, E = 1 – (2k-1 – 1) =  – 2k-1 + 2

● V = M × 2E =  (1 – epsilon) × 2^(-2k-1+2)



More Properties of IEEE FP

CS 4400—Lecture 4      13

●  The smallest normalized value > 0 has a bit pattern 

consisting of 1 in LSB of exp field and all 0s elsewhere.
● M = 1 + f = 1, E = e – (2k-1 – 1) =  – 2k-1 + 2

● V = M × 2E =  2^(-2k-1+2)

●  The value 1.0 has a bit pattern with all but the MSB of 

the exp field set to 1 and all other bits set to 0.
● M = 1 + f = 1, E = e – (2k-1 – 1) =  0



More Properties of IEEE FP

CS 4400—Lecture 4      14

●  The largest normalized value has a bit pattern consisting 

of 0 in LSB of exp field and all 1s elsewhere. 
● M = 1 – f = 2 – epsilon, E = e – (2k-1 – 1) =  2k-1 – 1 

● V = M × 2E =  (2 – epsilon) × 2^(2k-1 – 1)



Rounding

CS 4400—Lecture 4      15

●  For a real value x, find the “closest” matching x' 

representable in floating-point format.

●  The key problem is to define the direction to round a 

value that is halfway between two possibilities.  

●  Another approach is to determine representable values x– 

and x+ such that x– ≤ x ≤ x+ is guaranteed.

●  IEEE floating-point format defines four rounding modes.
●  The default mode finds x'.

●  The other three can be used to compute x– and x+.



Rounding Modes

CS 4400—Lecture 4      16

●  Round-to-even (aka round-to-nearest) mode—default
● rounds either upward or downward such that least-significant      

digit of the result is even, e.g., both $1.50 and $2.50 → $2

●  Round-to-zero mode
● rounds positive numbers downward and negative numbers          

upward, giving value x'' such that | x'' | ≤ | x | 

●  Round-up mode
● rounds all numbers upward, giving value x– such that x– ≤ x  

●  Round-down mode
● rounds all numbers downward, giving value x+ such that x ≤ x+  



Floating-Point Operations

CS 4400—Lecture 4      17

●  The result of floating-point addition or multiplication is 

simply the exact result of the operation defined over real 

numbers, and then rounded (to be representable).

●  Floating-point addition is not associative.
●  for single precision, (3.14 + 1e10) – 1e10 is 0.0

●  but, 3.14 + (1e10 - 1e10) is 3.14

●  Floating-point multiplication is not associative or 

distributive over addition.
●  for single precision, 1e20 * (1e20 - 1e20) is 0.0

●  but, 1e20 * 1e20 – 1e20 * 1e20 is NaN



Clicker Question

CS 4400—Lecture 4      18

True or False:  In C, all int values can be 

    represented as float values.

A.    true

B.    false

C.    I don't know.



Floating Point in C

CS 4400—Lecture 4      19

●  Single precision: float, double precision: double

●  Round-to-even mode

●  C standard does not require IEEE format—no (standard) 

way to change rounding modes or get special values.
●  most systems provide access to such features, but details vary

●  Casting among types changes numeric values as follows:
●  int to float: may be rounded

●  int/float to double: exact numeric value is preserved

●  double to float: may overflow or be rounded

●  float/double to int: truncated toward zero, may overflow



Clicker Questions
Always true?  Click  A: yes,  B: no, C: I don't know.

Assume: int x, float f, double d

● x == (int)(float)x

● x == (int)(double)x

● f == (float)(double)f

● d == (double)(float)d

● f == -(-f)

● 2/3 == 2/3.0

● (d >= 0.0) || ((d*2) < 0.0)

● (d+f) – d == f



Extended Precision

CS 4400—Lecture 4      21

●  Floating-point registers of the IA32 processors use

  80-bit extended-precision format (with x87, not SSE).
● k=15 exponent bits, n=63 fraction bits

●  When normal single- and double-precision numbers are

loaded from memory, they are converted to this format.

●  Arithmetic is always performed in the extended format.

●  Numbers are converted back to single- or double-

precision as they are stored to memory

●  Can lead to undesirable consequences (see text).



Summary:  Representing Information

CS 4400—Lecture 4      22

●  Groups of bits are interpreted differently for integers, real 

numbers, and character strings.
● encoding and byte-ordering conventions differ across machines

●  C is designed to accommodate a wide range of word 

sizes and encodings.
● most machines use two's complement and IEEE format

●  In casting between signed and unsigned integers, the 

underlying bit patterns do not change.

●  Due to finite encoding length, properties of computer 

arithmetic differ from those of integer/real arithmetic.



Summary:  Representing Information

CS 4400—Lecture 4      23

●  Overflow—a result exceeds representable range.

●  Underflow—a floating-point value is so close to 0.0, it is 

represented as such.

●  Properties of computer arithmetic allow compilers to do 

many optimizations.
● such as replacing 7*x with (x<<3)-x

●  Floating-point arithmetic must be used carefully because 

of its limited range and precision, as well as, because it 

does not obey some common math properties.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

