CS 4400

Computer Systems

LECTURE 3

Representing integers
Integer arithmetic

Encoding Integers

- Two different ways bits can be used to encode integers:
- unsigned - only nonnegative numbers represented
- signed - negative, zero, and positive values represented
- Both encodings represent a finite range of integers.

type declaration (C)	\min	\max
char	-128	127
unsigned char	0	255
short	-32768	32767
unsigned short	0	65535
int	-2147483648	2147483647
unsigned int	0	4294967295

Unsigned Integers

- Let vector $\vec{x}=\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]$ denote a w-bit integer value.
- Treat \vec{x} as a number written in binary notation to obtain

- $\mathrm{UMin}_{w}=[00 \ldots 00]=0$
- $\mathrm{UMax}_{w}=[11 \ldots 11]=2^{w}-1$
- $\mathrm{B}_{2} \mathrm{U}_{w}:\{0,1\}^{w} \rightarrow\left\{0, \ldots, 2^{w}-1\right\}$
- Bijection-associates a unique value to each w-bit vector.

Signed Integers

- The most common computer representation of signed integers is two's complement.

$$
\mathrm{B}^{2} \mathrm{~T}_{w}(\vec{x})=-x_{w-1} 2^{w-1}+\sum_{i=0}^{w-2} x_{i} 2^{i}
$$

- Sign bit-the MSB, 1: negative and 0: nonnegative.
- $\operatorname{TMin}_{w}=[10 \ldots 00]=-2^{w-1}$
- $\operatorname{TMax}_{w}=[01 \ldots 11]=2^{w-1}-1$
- B2T ${ }_{w}:\{0,1\}^{w} \rightarrow\left\{-2^{w-1}, \ldots, 2^{w-1}-1\right\}$
- Is $\mathrm{B} 2 \mathrm{~T}_{w}$ a bijection?

Exercises: Encoding Integers

Let $w=4$.

Hex	Binary	B2 $_{w}$	B2T $_{w}$
A	$[1010]$	$2^{3}+2^{1}=10$	$-2^{3}+2^{1}=-6$
B			
C			
D			
E			
F			

Clicker Question

If you have ResponseCard clicker, channel is 41.
If you are using ResponseWare, session id is CS1400U.

Let $w=8$. Compute $\mathrm{B} 2 \mathrm{~T}_{w}$ for hex AE.
A. -84
B. -82
C. -62
D. 84
E. 174
F. none of the above

More on Two's Complement

- The two's complement range is asymmetric.
- $\operatorname{UMax}_{w}>2$ * TMax_{w}. Why?
- Both encodings represent numeric value 0 the same way.
- The C standard does not require two's complement for signed integers.
- Nearly all machines use it anyway. Does this affect portability?
- See limits.h for constants delimiting ranges of different integer data types for a particular compiler and machine.
- Other ways of representing signed integers?

Clicker Question

Which of the following expressions is equivalent to $\sim x$?
A. x
B. $-x$
C. $x+1$
D. $-x+1$
E. $-\mathrm{x}-1$
F. none of the above

Signed-Unsigned Conversions

- Since both $\mathrm{B}_{2} \mathrm{U}_{w}$ and $\mathrm{B} 2 \mathrm{~T}_{w}$ are bijections, they have well-defined inverses, $\mathrm{U} 2 \mathrm{~B}_{w}$ and $\mathrm{T} 2 \mathrm{~B}_{w}$.
- Consider $\mathrm{U} 2 \mathrm{~T}_{w}(\vec{x})={\mathrm{B} 2 \mathrm{~T}_{w}}^{w}\left(\mathrm{U} 2 \mathrm{~B}_{w}(\vec{x})\right)$.
- Takes number between 0 and 2^{w-1}, yields number between -2^{w-1} and $2^{\mathrm{w}-1}-1$.
- Both numbers have identical bit representations.
- Conversely, consider $\mathrm{T} 2 \mathrm{U}_{w}(\vec{x})=\mathrm{B}_{2} \mathrm{U}_{w}\left(\mathrm{~T}_{2} \mathrm{~B}_{w}(\vec{x})\right)$.
- Example (8-bit): [10101010], 170 unsigned, -86 signed
- How do these functions affect signed and unsigned in C?

Unsigned and Signed in C

```
int x = -1;
unsigned ux = (unsigned) x; // ux is UMax_w
```

- In C, values are signed unless
- indicated with type (e.g., unsigned short)
- U in constant (e.g., 1234U)
- doesn't fit in signed long
- starts 0 x and doesn't fit in signed int
- Use conversion codes $\% d$ (or $\% i$), $\% u$ to print signed and unsigned decimal values, respectively.
- When signed and unsigned values are mixed in expressions, the signed values are promoted to unsigned.

Example: Unsigned and Signed

unsigned_signed.c

```
#include <stdio.h>
int main(void) {
    int tx, ty;
    unsigned ux, uy;
    tx = -96;
    uy = 15;
    ux = (unsigned) tx; // explicit cast to unsigned
    ty = uy;
// implicit cast to signed
    printf("%d, %d, %u, %u\n", tx, ty, ux, uy);
    printf("%d\n", ux + ty); // WHY = -81??
    return 0;
}
```


Clicker Question

Assume x and y are arbitrary int values.

$$
(x>0)|\mid(-x>=0)
$$

A. always true
B. sometimes true
C. always false
D. I don't know

Expanding Bit Representations

- A common operation is to convert between integers of different word sizes, retaining the same numeric value.
- To convert from smaller word size to larger:
- for unsigned, simply add leading 0 s - zero extension
- for signed, add leading Xs such that $\mathrm{X}=\mathrm{MSB}-$ sign extension
- Example:

```
short sx = 12345; // 0x3039
short sy = -12345; // 0xCFC7
int x = sx; // 0x00003039
int y = sy; // 0xFFFFCFC7
```


Truncating Bit Representations

- To convert from larger word size to smaller (w-bit to k-bit, where $w>k$):
- drop high-order w - k bits - truncation
- Truncation of a number can alter its value, a form of overflow.

```
short x = (int) 12345; // 0x00003039, x is 12345
short y = (int) 53191; // 0x0000CFC7, y is -12345
```

- For unsigned x, truncation to k-bit equivalent to $x \bmod 2^{k}$. For signed x ?

Advice on Unsigned

- Implicit casts are tricky (because they are easy to overlook) and can lead to bugs.
- To avoid such bugs, one might consider using only signed values.
- Few languages other than C support unsigned values.
- Java supports only signed values, requires two's complement, and guarantees that >> is an arithmetic shift.
- Unsigned values are very useful when thought of as a collection of bits (flags), with no math interpretation.

Unsigned Addition

- Consider w-bit unsigned values x and $y, 0 \leq x, y \leq 2^{w}-1$.
- Representing the sum could require $w+1$ bits, $0 \leq x+y \leq 2^{w+1}-2$
- In math, we cannot place any bound on the word size required to fully represent the results of arithmetic ops.
- Unsigned arithmetic is a form of modulo arithmetic.
- Unsigned addition is equivalent to $(x+y) \bmod 2^{w}$.
- unsigned_add $(x, y)=x+y$, if $x+y<2^{w}$
- unsigned_add $(x, y)=x+y-2^{w}$, if $2^{w} \leq x+y<2^{w+1}$
- Example:

$$
\text { unsigned short } \mathrm{x}=65530+6 ; / / \mathrm{x} \text { is } 0
$$

Overflow

- An arithmetic operation is said to overflow when the full integer result cannot fit within the limits of the data type.
- In C, overflow is not signaled as an error.
- Some types of overflow may be signaled with a warning.
- We know that overflow has occurred during unsigned integer addition $s=x+y$, if $s<x$ (equivalently, if $s<y$).
- Example:

```
unsigned x = ~0;
unsigned Y = 2;
unsigned s = x + y;
if(s < x) { ... } // overflow
```


Two's Complement Addition

- Consider w-bit values x and $y,-2^{w-1} \leq x, y \leq 2^{w-1}-1$.
- Representing the sum could require $w+1$ bits, $-2^{w} \leq x+y \leq 2^{w}-2$
- We must truncate the result to w bits.
- However, this is not as familiar as modulo arithmetic.
- The w-bit sum is the same as for unsigned addition.

$$
\mathrm{U} 2 \mathrm{~T}_{w}\left(\left[(x+y) \bmod 2^{w}\right]\right)
$$

- Both positive and negative overflow can occur.
- Example:

$$
\begin{array}{ll}
\text { int } \mathrm{x}=1 \ll 30 ; & \\
\text { int } \mathrm{y}=\mathrm{x}+\mathrm{x} ; & / / \mathrm{y} \text { is }-2147483648 \\
\mathrm{y}=-++\mathrm{x}-\mathrm{x} ; & / / \mathrm{y} \text { is } 2147483646
\end{array}
$$

Cases of Overflow

- Negative overflow-if $-2^{w} \leq x+y<-2^{w-1}$.
- both x and y must be negative
- a nonnegative integer is the result (counter to usual math)
- twoscomp_add $(x, y)=x+y+2^{w}$
- No overflow-if $-2^{w-1} \leq x+y<2^{w-1}$.
- twoscomp_add $(x, y)=x+y$
- Positive overflow-if $2^{w-1} \leq x+y<2^{w}$.
- both x and y must be positive
- a negative integer is the result (counter to usual math)
- twoscomp_add $(x, y)=x+y-2^{w}$

Unsigned Multiplication

- Consider w-bit unsigned values x and $y, 0 \leq x, y \leq 2^{w}-1$.
- The product could require $2 w$ bits, $0 \leq x^{*} y \leq\left(2^{w}-1\right)^{2}$
- We must truncate the result to w bits.
- In C, the low-order w bits are retained as the result.
- Equivalent to computing the product mod 2^{w}.
- Example:

$$
\begin{array}{ll}
\text { unsigned short } x=1 \ll 15 ; & / / 32768 \\
x *=3 ; & / / 32768
\end{array}
$$

Two's Complement Multiplication

- Consider w-bit values x and $y,-2^{w-1} \leq x, y \leq 2^{w-1}-1$.
- The product could require $2 w$ bits, $-2^{2 w-2}+2^{w-1} \leq x * y \leq 2^{2 w-2}$
- We must truncate the result to w bits.
- However, this is not as familiar as for unsigned multiplication.
- The w-bit product is the same as for unsigned multiply.

$$
\mathrm{U}^{2} \mathrm{~T}_{w}\left(\left[(x * y) \bmod 2^{w}\right]\right)
$$

- Example:

```
short x = 1 << 14;
// 16384
unsigned short y = x * 3; // 49152
x *= 3; // -16384
```


Multiplication by Powers of Two

- Integer multiplication used to be slow (≥ 12 cycles) compared to other integer operations.
- addition, subtraction, bit-level ops, and shifts-1 cycle each
- An important (compiler) optimization was to replace multiplications by constant factors with shifts and adds.
- Let x be an integer. For any $k \geq 0, x^{*} 2^{k}$ is equivalent to adding $k 0$'s to the right of the bit representation of x.
- Example:

```
unsigned int = 11 << 3; // 88
int = -11 << 3; // -88
```


Division by Powers of Two

- Integer division was also slow (≥ 30 cycles).
- Let x be an unsigned integer. For any $k \geq 0, x / 2^{k}$ is equivalent to adding $k 0$'s to the left of the bit rep for x.
- logical shift
- Let x be an signed integer. For any $k \geq 0, x / 2^{k}$ is equivalent to adding $k b$'s to the left of the bit rep for x.
- b is the value of x^{\prime} MSB, arithmetic shift
- What if $x<0$?
- Example:

$$
\begin{array}{ll}
\text { int } x=55 \gg 3 ; & / / 6 \\
\text { int } y=-55 \gg 3 ; & / /-7 \text { (should be }-6)
\end{array}
$$

Biasing

- If $x<0$, integer division should round negative results up toward zero. Right shifting does not accomplish this.
- To correct for this improper rounding, we must "bias" the value before shifting.
- First add $2^{k}-1$ to x.
- For x, represented with two's complement and using arithmetic shifts, $x / 2^{k}$ is equivalent to

$$
(x<0 \text { ? }(x+(1 \ll k)-1): x) \gg k
$$

- Example:

```
                        int y = (-55 + (1 << 3) - 1) >> 3;
```

 // -6

Clicker Question

Assume x and y are arbitrary int values.

$$
((y-x) \ll 3)-y-x==7 * y-9 * x
$$

A. always true
B. sometimes true
C. always false
D. I don't know

