CS 4400 Computer Systems

LECTURE 3

Representing integers Integer arithmetic

Encoding Integers

- Two different ways bits can be used to encode integers:
 - *unsigned* only nonnegative numbers represented
 - *signed* negative, zero, and positive values represented
- Both encodings represent a finite range of integers.

type declaration (C)	min	max
char	-128	127
unsigned char	0	255
short	-32768	32767
unsigned short	0	65535
int	-2147483648	2147483647
unsigned int	0	4294967295

Unsigned Integers

- Let vector $\vec{x} = [x_{w-1}, x_{w-2}, ..., x_0]$ denote a *w*-bit integer value.
- Treat \vec{x} as a number written in binary notation to obtain the unsigned interpretation. B2U_w(\vec{x}) = $\sum_{i=0}^{w-1} x_i 2^i$
- $UMin_w = [00...00] = 0$
- $UMax_w = [11...11] = 2^w 1$
- B2U_w: $\{0,1\}^{w} \rightarrow \{0, ..., 2^{w}-1\}$
- *Bijection*—associates a unique value to each *w*-bit vector.

Signed Integers

• The most common computer representation of signed integers is *two's complement*.

$$B2T_{w}(\vec{x}) = -x_{w-1} 2^{w-1} + \sum_{i=0}^{w-2} x_{i} 2^{i}$$

• *Sign bit*—the MSB, 1: negative and 0: nonnegative.

•
$$TMin_w = [10...00] = -2^{w-1}$$

•
$$TMax_{w} = [01...11] = 2^{w-1} - 1$$

- $B2T_{w}: \{0,1\}^{w} \rightarrow \{-2^{w-1}, ..., 2^{w-1}-1\}$
- Is B2T_w a bijection?

Exercises: Encoding Integers

Let w = 4.

Hex	Binary	B2U _w	B2T _w
A	[1010]	$2^3 + 2^1 = 10$	$-2^3 + 2^1 = -6$
В			
С			
D			
Е			
F			

Clicker Question

If you have ResponseCard clicker, channel is **41**. If you are using ResponseWare, session id is **CS1400U**.

Let w = 8. Compute B2T_w for hex AE.

- A. -84
- **B.** -82
- C. -62
- D. 84
- E. 174
- F. none of the above

More on Two's Complement

- The two's complement range is asymmetric.
- $UMax_{w} > 2 * TMax_{w}$. Why?
- Both encodings represent numeric value 0 the same way.
- The C standard does not require two's complement for signed integers.
 - Nearly all machines use it anyway. Does this affect portability?
 - See limits.h for constants delimiting ranges of different integer data types for a particular compiler and machine.
 - Other ways of representing signed integers?

Clicker Question

Which of the following expressions is equivalent to $\sim x$?

- A. **x**
- B. **-x**
- C. x + 1
- D. -x + 1
- E. -x 1
- F. none of the above

Signed-Unsigned Conversions

- Since both $B2U_w$ and $B2T_w$ are bijections, they have well-defined inverses, $U2B_w$ and $T2B_w$.
- Consider $U2T_w(\vec{x}) = B2T_w(U2B_w(\vec{x})).$
 - Takes number between 0 and 2^{w-1}, yields number between -2^{w-1} and $2^{w-1}-1$.
 - Both numbers have identical bit representations.
- Conversely, consider $T2U_w(\vec{x}) = B2U_w(T2B_w(\vec{x}))$.
- *Example* (8-bit): [10101010], 170 unsigned, -86 signed
- How do these functions affect signed and unsigned in C?

Unsigned and Signed in C

int x = -1;

unsigned ux = (unsigned) x; // ux is UMax_w

- In C, values are signed unless
 - indicated with type (e.g., unsigned short)
 - U in constant (e.g., 1234U)
 - doesn't fit in signed long
 - starts 0x and doesn't fit in signed int
- Use conversion codes %d (or %i), %u to print signed and unsigned decimal values, respectively.
- When signed and unsigned values are mixed in expressions, the signed values are promoted to unsigned.

Example: Unsigned and Signed

unsigned_signed.c

```
#include <stdio.h>
                                 unix> gcc unsigned_signed.c
                                 unix> ./a.out
int main(void) {
                                 -96, 15, 4294967200, 15
  int tx, ty;
                                 -81
 unsigned ux, uy;
 t_{x} = -96;
 uv = 15;
 ux = (unsigned) tx; // explicit cast to unsigned
                     // implicit cast to signed
 ty = uy;
 printf("%d, %d, %u, %u\n", tx, ty, ux, uy);
 printf("%d\n", ux + ty); // WHY = -81??
 return 0;
```

Clicker Question

Assume x and y are arbitrary int values. (x > 0) || (-x >= 0)

- A. always true
- B. sometimes true
- C. always false
- D. I don't know

Expanding Bit Representations

- A common operation is to convert between integers of different word sizes, retaining the same numeric value.
- To convert from smaller word size to larger:
 - for unsigned, simply add leading 0s zero extension
 - for signed, add leading Xs such that X=MSB *sign extension*
- *Example*:

```
short sx = 12345; // 0x3039
short sy = -12345; // 0xCFC7
int x = sx; // 0x00003039
int y = sy; // 0xFFFCFC7
```

Truncating Bit Representations

- To convert from larger word size to smaller (*w*-bit to *k*-bit, where *w* > *k*):
 - drop high-order *w*-*k* bits *truncation*
- Truncation of a number can alter its value, a form of overflow.

short x = (int) 12345; // 0x00003039, x is 12345
short y = (int) 53191; // 0x0000CFC7, y is -12345

For unsigned x, truncation to k-bit equivalent to x mod 2^k.
 For signed x?

Advice on Unsigned

- Implicit casts are tricky (because they are easy to overlook) and can lead to bugs.
- To avoid such bugs, one might consider using only signed values.
 - Few languages other than C support unsigned values.
 - Java supports only signed values, requires two's complement, and guarantees that >> is an arithmetic shift.
- Unsigned values are very useful when thought of as a collection of bits (flags), with no math interpretation.

Unsigned Addition

- Consider *w*-bit unsigned values *x* and *y*, $0 \le x, y \le 2^w 1$.
 - Representing the sum could require w+1 bits, $0 \le x + y \le 2^{w+1}-2$
- In math, we cannot place any bound on the word size required to fully represent the results of arithmetic ops.
- Unsigned arithmetic is a form of modulo arithmetic.
 - Unsigned addition is equivalent to $(x + y) \mod 2^w$.
 - unsigned_add(x, y) = x + y, if $x + y < 2^w$
 - unsigned_add(x, y) = $x + y 2^w$, if $2^w \le x + y < 2^{w+1}$
- Example: unsigned short x = 65530 + 6; // x is 0

Overflow

- An arithmetic operation is said to *overflow* when the full integer result cannot fit within the limits of the data type.
- In C, overflow is not signaled as an error.
 - Some types of overflow <u>may</u> be signaled with a warning.
- We know that overflow has occurred during unsigned integer addition s = x + y, if s < x (equivalently, if s < y).
- Example: unsigned x = ~0; unsigned y = 2; unsigned s = x + y; if(s < x) { ... } // overflow</pre>

Two's Complement Addition

- Consider w-bit values x and y, $-2^{w-1} \le x, y \le 2^{w-1}-1$.
 - Representing the sum could require w+1 bits, $-2^w \le x + y \le 2^w-2$
- We must truncate the result to *w* bits.
 - However, this is not as familiar as modulo arithmetic.
- The *w*-bit sum is the same as for unsigned addition.

 $U2T_{w}([(x+y) \mod 2^{w}])$

- Both positive and negative overflow can occur.
- Example: int x = 1 << 30; int y = x + x; // y is -2147483648 y = -++x -x; // y is 2147483646

Cases of Overflow

- Negative overflow—if $-2^w \le x + y < -2^{w-1}$.
 - both *x* and *y* must be negative
 - a nonnegative integer is the result (counter to usual math)
 - twoscomp_add(x, y) = $x + y + 2^w$
- *No overflow*—if $-2^{w-1} \le x + y < 2^{w-1}$.
 - twoscomp_add(x, y) = x + y
- *Positive overflow*—if $2^{w-1} \le x + y < 2^{w}$.
 - both *x* and *y* must be positive
 - a negative integer is the result (counter to usual math)
 - twoscomp_add(x, y) = $x + y 2^w$

Unsigned Multiplication

- Consider *w*-bit unsigned values *x* and *y*, $0 \le x, y \le 2^w-1$.
 - The product could require 2w bits, $0 \le x * y \le (2^w 1)^2$
- We must truncate the result to *w* bits.
 - In C, the low-order *w* bits are retained as the result.
 - Equivalent to computing the product mod 2^w.
- Example: unsigned short x = 1 << 15; // 32768 x *= 3; // 32768

Two's Complement Multiplication

- Consider *w*-bit values *x* and *y*, $-2^{w-1} \le x, y \le 2^{w-1}-1$.
 - The product could require 2w bits, $-2^{2w-2} + 2^{w-1} \le x * y \le 2^{2w-2}$
- We must truncate the result to *w* bits.
 - However, this is not as familiar as for unsigned multiplication.
- The *w*-bit product is the same as for unsigned multiply.

 $U2T_{w}([(x * y) \mod 2^{w}])$

• Example: short x = 1 << 14; // 16384 unsigned short y = x * 3; // 49152 x *= 3; // -16384

Multiplication by Powers of Two

- Integer multiplication used to be slow (≥ 12 cycles)
 compared to other integer operations.
 - addition, subtraction, bit-level ops, and shifts—1 cycle each
- An important (compiler) optimization was to replace multiplications by constant factors with shifts and adds.
- Let x be an integer. For any $k \ge 0$, $x * 2^k$ is equivalent to adding k 0's to the right of the bit representation of x.

Division by Powers of Two

- Integer division was also slow (\geq 30 cycles).
- Let x be an unsigned integer. For any $k \ge 0$, $x / 2^k$ is equivalent to adding k 0's to the left of the bit rep for x.
 - logical shift
- Let x be an signed integer. For any $k \ge 0$, $x / 2^k$ is equivalent to adding k b's to the left of the bit rep for x.
 - *b* is the value of *x*'s MSB, arithmetic shift
 - What if x < 0?

• Example: int x = 55 >> 3; // 6 int y = -55 >> 3; // -7 (should be -6) CS 4400—Lecture 3 23

Biasing

- If x < 0, integer division should round negative results up toward zero. Right shifting does not accomplish this.
- To correct for this improper rounding, we must "bias" the value before shifting.
 - First add 2^k -1 to x.
- For x, represented with two's complement and using arithmetic shifts, x / 2^k is equivalent to
 (x<0 ? (x + (1<<k)-1) : x) >> k
- Example: int y = (-55 + (1 << 3) 1) >> 3; // -6

Clicker Question

Assume x and y are arbitrary int values.

((y - x) << 3) - y - x == 7*y - 9*x

- A. always true
- B. sometimes true
- C. always false
- D. I don't know