
CS 4400

Computer Systems

LECTURE 24

Semaphores

Concurrency issues

/* badcnt.c */
#include "csapp.h"

#define NITERS 200000000
void* count(void* arg);

unsigned int cnt = 0; /* shared counter variable */

int main() {
 pthread_t tid1, tid2;

 Pthread_create(&tid1, NULL, count, NULL);
 Pthread_create(&tid2, NULL, count, NULL);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 if(cnt != (unsigned)NITERS*2)
 printf("BOOM! cnt=%d\n", cnt);
 else
 printf("OK cnt=%d\n", cnt);
 exit(0);
}

/* thread routine */
void* count(void* arg) {
 int i;
 for(i = 0; i < NITERS; i++)
 cnt++;
 return NULL;
}

unix> ./badcnt
BOOM! ctr=278125352

unix> ./badcnt
BOOM! ctr=271726247

unix> ./badcnt
BOOM! ctr=276537330

Example: Shared Variable cnt

CS 4400—Lecture 24 3

.L9:
 movl -4(%ebp),%eax
 cmpl $99999999,%eax
 jle .L12
 jmp .L10
.L12:
 movl ctr,%eax
 leal 1(%eax),%edx
 movl %edx,ctr
.L11:
 movl -4(%ebp),%eax
 leal 1(%eax),%edx
 movl %edx,-4(%ebp)
 jmp .L9
.L10:

Hi : Head

Ti : Tail

Li : Load ctr

Ui : Update ctr

Si : Store ctr

for (i=0; i<NITERS; i++)
 ctr++;

C code for thread i

Asm code for thread i

● H
i
 and T

i
 manipulate only local stack variables.

● L
i
 U

i
 and S

i
 manipulate the shared counter variable.

Process Graph

CS 4400—Lecture 24

Models the execution of n threads as a trajectory through
an n-dimensional Cartesian space.
● each axis k shows the progress of thread k

● each point (I
1
, I

2
, ..., I

n
)

 represents the state where
 thread k has completed
 instruction I

k

● the trajectory corresponds
 to the ordering of
 instructions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Critical Section

CS 4400—Lecture 24

● Instructions L
i
, U

i
, and, S

i
 constitute a critical section for

thread i.

● The intersection of two
critical sections is an
unsafe region.

● A safe trajectory
skirts the unsafe
region.

● An unsafe trajectory
touches any part of
the unsafe region.

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Unsafe region Unsafe
trajectory

Safe trajectory

Critical section wrt cnt

Critical
section
wrt cnt

Semaphore

CS 4400—Lecture 24 6

● A global variable s ≥ 0 that can only be manipulated

using one of two operations: P and V.

● P(s)
● if s!= 0, s-- and return (occurs indivisibly)

● if s = = 0, suspend the process until s becomes nonzero (process is

restarted by a V operation), after restarting s-- and return

● V(s)
● s++ and check to see if any processes are blocked in a P operation

waiting for s to become nonzero (restarts exactly one of such

processes)

● increment occurs indivisibly

Binary Semaphores

CS 4400—Lecture 24 7

● Associate a semaphore s (initially 1) with each shared

variable (or related set of shared variables).

● Surround the corresponding critical section with P(s) and

V(s) operations.

● Binary—value of s is always 0 or 1.

● The semaphore operations ensure mutually exclusive

access to the critical region.

● Where should P(s) and V(s) be placed in our cnt

example?

Example: Binary Semaphore

CS 4400—Lecture 24 8

H1 P(s) V(s) T1

Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

Unsafe region

Forbidden region

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0
-1 -1 -1 -1

0 0

0 0

-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

Posix Semaphores

CS 4400—Lecture 24 9

● Functions for manipulating semaphores.

int sem_init(sem_t* sem, 0, unsigned int value);
int sem_wait(sem_t* sem); /* P(s) */
int sem_post(sem_t* sem); /* V(s) */

void P(sem_t* sem); /* wrapper */
void V(sem_t* sem); /* wrapper */

● Example:
sem_t mutex; /* semaphore to synch cnt access */
sem_init(&mutex, 0, 1); /* init mutex */
...
for(i = 0; i < NITERS; i++) {
 P(&mutex); /* protect shared */
 cnt++; /* variable cnt */
 V(&mutex);
}

Producer-Consumer Model

CS 4400—Lecture 24

● Producer and consumer threads share a bounded buffer,

with n slots.
● producer thread adds items to the buffer

● consumer thread retrieves items from the buffer

● Must guarantee mutually-exclusive access to the buffer,

and that the producer/consumer cannot access the buffer

if it is full/empty.
typedef struct {
 int* buf; /* Buffer array */
 int n; /* Max # of slots */
 int front; /* buf[(front+1)%n] is 1st item */
 int rear; /* buf[rear%n] is last item */
 sem_t mutex; /* Protects accesses to buf */
 sem_t slots; /* Counts available slots */
 sem_t items; /* Counts available items */
} sbuf_t;

/* Create an empty, bounded, shared FIFO buffer with n slots */
void sbuf_init(sbuf_t* sp, int n) {
 sp->buf = Calloc(n, sizeof(int));
 sp->n = n; /* Buffer holds max of n items */
 sp->front = sp->rear = 0; /* Empty buffer iff front == rear */
 Sem_init(&sp->mutex, 0, 1); /* Binary semaphore for locking */
 Sem_init(&sp->slots, 0, n); /* Initially, buf has n empty slots */
 Sem_init(&sp->items, 0, 0); /* Initially, buf has 0 data items */
}

/* Clean up buffer sp */
void sbuf_deinit(sbuf_t* sp) { Free(sp->buf); }

/* Insert item onto the rear of shared buffer sp */
void sbuf_insert(sbuf_t* sp, int item) {
 P(&sp->slots); /* Wait for available slot */
 P(&sp->mutex); /* Lock the buffer */
 sp->buf[(++sp->rear)%(sp->n)] = item; /* Insert the item */
 V(&sp->mutex); /* Unlock the buffer */
 V(&sp->items); /* Announce available item */
}

/* Remove and return the first item from buffer sp */
int sbuf_remove(sbuf_t* sp) {
 int item;
 P(&sp->items); /* Wait for available item */
 P(&sp->mutex); /* Lock the buffer */
 item = sp->buf[(++sp->front)%(sp->n)]; /* Remove the item */
 V(&sp->mutex); /* Unlock the buffer */
 V(&sp->slots); /* Announce available slot */
 return item;
}

Prethreading
● Recall that our concurrent echo server creates a new thread

for each client, incurring significant overhead.

● Another solution includes a main thread (the server) and n

worker threads.
● main thread accepts connection requests from clients and puts each

connection descriptor in a shared buffer

● each worker thread repeatedly removes a descriptor from the buffer,

services the client, and waits for the next descriptor

Master
thread Buffer ...

Accept
connections

Insert
descriptors Remove

descriptors

Worker
thread

Worker
thread

 Client

Client

...

Service client

Service client

Pool of worker threads

/* echoservert_pre.c – a prethreaded concurrent echo server */
sbuf_t sbuf; /* shared buffer of connected descriptors */

int main(int argc, char* argv[]) {
 int i, listenfd, connfd, port, clientlen=sizeof(struct sockaddr_in);
 struct sockaddr_in clientaddr;
 pthread_t tid;

 if (argc != 2)
 /* ERROR, QUIT */
 port = atoi(argv[1]);
 sbuf_init(&sbuf, 16);
 listenfd = Open_listenfd(port);

 for(i = 0; i < 4; i++) /* Create worker threads */
 Pthread_create(&tid, NULL, thread, NULL);

 while(1) {
 connfd = Accept(listenfd, (SA*) &clientaddr, &clientlen);
 sbuf_insert(&sbuf, connfd); /* Insert connfd in buffer */
 }
}

void* thread(void* vargp) {
 Pthread_detach(pthread_self());
 while(1) {
 int connfd = sbuf_remove(&sbuf); /* Remove connfd from buffer */
 echo_cnt(connfd); /* Service client */
 Close(connfd);
 }
}

/* A thread-safe version of echo that counts the total number
 of bytes received from clients. */

static int byte_cnt; /* byte counter */
static sem_t mutex; /* and the mutex that protects it */

static void init_echo_cnt(void) {
 Sem_init(&mutex, 0, 1);
 byte_cnt = 0;
}

void echo_cnt(int connfd) {
 int n;
 char buf[MAXLINE];
 rio_t rio;
 static pthread_once_t once = PTHREAD_ONCE_INIT;

 Pthread_once(&once, init_echo_cnt);
 Rio_readinitb(&rio, connfd);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
 P(&mutex);
 byte_cnt += n;
 printf("thread %d received %d (%d total) bytes on fd %d\n",

 (int) pthread_self(), n, byte_cnt, connfd);
 V(&mutex);
 Rio_writen(connfd, buf, n);
 }
}

CS 4400—Lecture 24 14

Other Concurrency Issues

CS 4400—Lecture 24 15

● We've looked at techniques for mutual exclusion and

producer-consumer synchronization, a small part of

concurrency programming.

● Synchronization is a fundamentally difficult problem that

raises issues that do not arise in sequential programs.

● What follows is a sample of the issues programmers must

be aware of when writing concurrent programs.

● Presented in the context of threads, the issues exist

whenever concurrent flows manipulate shared resources.

Thread Safety

CS 4400—Lecture 24 16

● A function is thread-safe iff it always produces correct

results when called repeatedly from multiple concurrent

threads.
● a function that is not thread-safe is called thread-unsafe

● Four (non-disjoint) classes of thread-unsafe functions:
● Class 1: functions that do not protect shared variables

● Class 2: functions that keep state across multiple invocations

● Class 3: functions that return a pointer to a static variable

● Class 4: functions that call thread-unsafe functions

Class 1: Shared Variables

CS 4400—Lecture 24 17

● /* thread-unsafe routine */
void* count(void* arg) {

 int i;
 for(i = 0; i < NITERS; i++)
 cnt++;
 return NULL;

}

● To make thread-safe, protect the shared variable with

synchronization operations.

● Pro: No changes in the calling program required.

● Con: Synchronization operations will slow down the

function.

Class 2: Keeps State Across Calls

CS 4400—Lecture 24 18

● unsigned int next = 1;
/* rand - return pseudo-random integer on 0..32767 */
int rand(void) {
 next = next*1103515245 + 12345;
 return (unsigned int)(next/65536) % 32768;
}
/* srand - set seed for rand() */
void srand(unsigned int seed) {
 next = seed;
}

● Calling rand repeatedly from a single thread is correct.
● What can happen if it is called from multiple threads?

● To make thread-safe, we must rely on the caller to pass

state information via arguments.
● forces a change in the code of the calling routine

● potentially 100s of call sites, a difficult and error-prone change

Class 3: Returns Pointer to Static

CS 4400—Lecture 24 19

● Some functions compute a result in a local static

variable and return a pointer to that variable.
● results being used by one thread may be silently overwritten by

another thread

● To make thread-safe, require the caller to pass the

address of the variable in which to store the result.
● removes shared variable, requires change in calling code

● Another option is the lock-and-copy technique.
● associate a mutex with the thread-unsafe function

● especially useful when the thread-unsafe function is impossible to

modify (e.g., it is linked from a library)

Lock-and-Copy

CS 4400—Lecture 24 20

● At each call site:
● dynamically allocate memory for the result

● lock the mutex

● call the thread-unsafe function

● copy the result returned by the function to this memory

● unlock the mutex

● struct hostent* gethostbyname_ts(char* hostname) {
 struct hostent *sharedp, *unsharedp;

 unsharedp = Malloc(sizeof(struct hostent)); /* dyn mem */
 P(&mutex); /* lock mutex */
 sharedp = gethostbyname(hostname); /* thread-unsafe fn */
 *unsharedp = *sharedp; /* copy to private struct */
 V(&mutex); /* unlock mutex */
 return unsharedp;

}

Class 4: Calls Thread-Unsafe

CS 4400—Lecture 24 21

● If function f calls thread-unsafe function g, f may or may

not also be thread-unsafe.

● If g keeps state across multiple invocations, then f is also

thread-unsafe.
● only solution is to rewrite g

● If g does not protect shared variables or returns a pointer

to a static variable, f may still be thread-safe.
● solution is to protect call to g with a mutex (like previous

example)

Reentrancy

CS 4400—Lecture 24 22

● Reentrant functions do not reference any shared data

when they are called by multiple threads.

● The set of reentrant functions is a proper subset of the

thread-safe functions.
● due to the lack of synchronization ops, reentrant functions are

typically more efficient that non-reentrant thread-safe functions

● The only way to convert a Class 2 thread-unsafe function

into a thread-safe one is to rewrite it to be reentrant.
 /* rand_r - a reentrant pseudo-random integer generator */

int rand_r(unsigned int* nextp) {
 *nextp = *nextp * 1103515245 + 12345;
 return (unsigned int)(*nextp / 65536) % 32768;

}

Determining Reentrancy

CS 4400—Lecture 24 23

● Explicitly reentrant—all function arguments are passed

by value and all data references are to local automatic

stack variables.

● Implicitly reentrant—allows some parameters in an

otherwise explicitly-reentrant function to be pointers.
● thus, it is a reentrant function only if the calling threads are careful to

pass pointers to non-shared data

● example: function rand_r

● Why is function gethotstbyname_ts thread-safe, but

not reentrant?

Races

CS 4400—Lecture 24 24

● A race occurs when the correctness of a program

depends on one thread reaching point x in its control

flow before another thread reaches point y.

● Threaded programs must work correctly for any feasible

trajectory.
● Often programmers assume that threads will take a particular

trajectory through the execution state space.

void* thread(void* vargp);

int main() {
 pthread_t tid[4];
 int i;

 for(i = 0; i < 4; i++)
 Pthread_create(&tid[i], NULL, thread, &i);
 for(i = 0; i < 4; i++)

Pthread_join(tid[i], NULL);
 exit(0);
}

/* thread routine */
void* thread(void* vargp) {
 int myid = *((int*)vargp);
 printf("Hello from thread %d\n", myid);
 return NULL;
}

unix> ./race
Hello from thread 1
Hello from thread 3
Hello from thread 2
Hello from thread 3

unix> ./race
Hello from thread 0
Hello from thread 1
Hello from thread 2
Hello from thread 3

Example: Race

CS 4400—Lecture 24 25

void* thread(void* vargp);

int main() {
 pthread_t tid[4];
 int i, *ptr;

 for(i = 0; i < 4; i++) {
 ptr = Malloc(sizeof(int));
 *ptr = i;
 Pthread_create(&tid[i], NULL, thread, ptr);
 /* why not call free here? */
 }
 for(i = 0; i < 4; i++)

Pthread_join(tid[i], NULL);
 exit(0);
}

/* thread routine */
void* thread(void* vargp) {
 int myid = *((int*)vargp);
 Free(vargp);
 printf("Hello from thread %d\n", myid);
 return NULL;
}

unix> ./norace
Hello from thread 0
Hello from thread 1
Hello from thread 2
Hello from thread 3

Example: No Race

CS 4400—Lecture 24 26

Deadlock
A run-time error where a collection of threads are blocked,
waiting for a condition that will never be true.

P(s) P(t)

P(t)

P(s)

Thread 1

Thread 2

V(s) V(t)

V(t)

V(s)

Forbidden
region
for s

......

...
...

...
...

Forbidden
region
for t

Deadlock
region

Initially
s = 1
t = 1

deadlock
state

A trajectory that deadlocks

...A trajectory that does not deadlock

d

The programmer has
incorrectly ordered
the semaphore ops.

In state d, each
program is waiting for
the other to do a V op
that won't occur.

Avoiding Deadlock

CS 4400—Lecture 24 28

● Deadlock is difficult to predict in a program.
● some trajectories will skirt the deadlock region

● others will be trapped by it

● When binary semaphores are used for mutual exclusion,

a simple rule can be applied.
● A program is deadlock-free if, for each pair of mutexes (s, t) in

the program, each thread that holds both s and t simultaneously

locks them in the same order.

● In our example, lock s first then t, in each thread.

Exercise: Deadlock

CS 4400—Lecture 24 29

● Initially: s = 1, t = 0.

Thread 1: Thread 2:
P(s); P(s);
V(s); V(s);
P(t); P(t);
V(t); V(t);

● Does this program deadlock? Always?

● If so, what simple change to the initial semaphore values

will eliminate the potential for deadlock?

Summary

CS 4400—Lecture 24 30

● A concurrent program consists of a collection of logical

flows that overlap in time.
● via processes—scheduled by the kernel, separate address space

● via threads—scheduled by the kernel, shared address space

● P and V operations on semaphores help to synchronize

concurrent accesses to shared data.
● provides mutually exclusive access to shared data

● schedules access to shared buffers in producer-consumer programs

● Difficult concurrency issues:
● thread safety, reentrant functions, races, deadlocks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

