
CS 4400

Computer Systems

LECTURE 23

Concurrent programming

Threads

Shared variables

Application-Level Concurrency

CS 4400—Lecture 23 2

● Computing in parallel on multiprocessors
● logical vs. physical concurrency

● Accessing slow I/O devices
● already done by kernel, can be done at app-level

● Interacting with humans
● create a separate concurrent flow to handle each user action

● Reducing latency by deferring work
● defer coalescing to a concurrent flow that runs at low priority

● Service multiple network clients
● create a separate concurrent flow for each client (more later)

Building Concurrent Programs

CS 4400—Lecture 23 3

Three basic approaches:

● Processes
● Each logical control flow is a processes (kernel-scheduled).

● Separate virtual address spaces—requires explicit IPC.

● I/O multiplexing (see text)
● Single process, all flows share same address space.

● Threads
● Logical flows that run in the context of a single process.

● Kernel schedules each thread.

● Hybrid approach—kernel-scheduled, shared address space.

Running Example

CS 4400—Lecture 23 4

● Echo server from 11.4.

● The client reads strings from a file until EOF.
● Sends string to server, then prints string received from server.

● The server receives strings from and returns strings to the

client until the connection with the client is closed.

● Functions from the Sockets Interface and the textbook's

RIO package are used.

● We will look at making a concurrent version of this

application using processes, and then threads.

/* echoclient.c - an echo client */
#include "csapp.h"

int main(int argc, char** argv) {
 int clientfd; /* client's socket descriptor */
 int port; /* server's well-known port */
 char* host; /* server's host name */
 char buf[MAXLINE]; /* input string */
 rio_t rio; /* read buffer */

 if(argc != 3)
 /* ERROR, QUIT */
 host = argv[1];
 port = atoi(argv[2]);

 clientfd = Open_clientfd(host, port); /* connect to server */
 Rio_readinitb(&rio, clientfd); /* init read buffer */

 while (Fgets(buf, MAXLINE, stdin) != NULL) {
 /* send input string to server */
 Rio_writen(clientfd, buf, strlen(buf));
 /* receive string from server */
 Rio_readlineb(&rio, buf, MAXLINE);
 Fputs(buf, stdout); /* print string */
 }
 Close(clientfd); /* close connection to server */
 exit(0);
}

/* echoserveri.c - an iterative echo server */
#include "csapp.h"

void echo(int connfd);

int main(int argc, char** argv) {
 int listenfd; /* “listening” socket descriptor */
 int connfd; /* “connected” socket descriptor */
 int port; /* server's well-known port */
 int clientlen; /* length of client's address */
 struct sockaddr_in clientaddr; /* client's address */

 if(argc != 2)
 /* ERROR, QUIT */
 port = atoi(argv[1]);

 listenfd = Open_listenfd(port); /* listen for client */
 while (1) {
 clientlen = sizeof(clientaddr);
 /* connect to client */
 connfd = Accept(listenfd, (SA*)&clientaddr, &clientlen);
 /* service the client */
 echo(connfd);
 /* close connection to client */

 Close(connfd);
 }
 exit(0);
}

/* echo.c - read and echo text lines until client closes
 connection */
#include "csapp.h"

void echo(int connfd) {
 char buf[MAXLINE]; /* input string */
 rio_t rio; /* read buffer */

 Rio_readinitb(&rio, connfd); /* init read buffer */

 /* while connection with client remains open . . . */
 while(Rio_readlineb(&rio, buf, MAXLINE) != 0) {
 /* read string from client and send string back to client */
 Rio_writen(connfd, buf, n);
 }
}

CS 4400—Lecture 23 7

Concurrency w/ Processes

CS 4400—Lecture 23 8

● Accept client connection requests in parent, and then

create a new child process to service each new client.

● Example: two clients, one server listening on descriptor 3

Step 1: Server accepts connection request from client.

Client 2

Client 1

clientfd
Server

connfd(4)

listenfd(3)

 Connection
request

Step 2: Server forks a child process to service the client.

Step 3: Server accepts another connection request.

Client 2

clientfd

Client 1

clientfd
Server

listenfd(3)

 Child 1

connfd(4)

Data
transfers

Client 2

clientfd

Client 1

clientfd
Server

listenfd(3)

 Child 1

connfd(4)

Connection
request

connfd(5)

Data
transfers

Step 4: Server forks another child to service new client.

(Parent is waiting for next connection request and two children are

servicing their respective clients concurrently.)

It is critical for the parent to close its copy of connfd after

a fork(). Why?

Client 2

clientfd

 Client 1

clientfd
Server

listenfd(3)

 Child 1

connfd(4)

Data
transfers

Child 2

connfd(5)

Data
transfers

CS 4400—Lecture 23 10

/* echoserverp.c - a concurrent echo server (based on processes) */
#include "csapp.h"
void echo(int connfd);

void sigchld_handler(int sig) {
 while(waitpid(-1, 0, WNOHANG) > 0) ; /* reap zombie children */
 return;
}

int main(int argc, char** argv) {
 int listenfd, connfd, port, clientlen=sizeof(struct sockaddr_in);
 struct sockaddr_in clientaddr;

 if(argc != 2)
 /* ERROR, QUIT */
 port = atoi(argv[1]);

 Signal(SIGCHLD, sigchld_handler);
 listenfd = Open_listenfd(port);
 while (1) {
 connfd = Accept(listenfd, (SA*)&clientaddr, &clientlen);
 if(Fork() == 0) {
 Close(listenfd); /* Child closes its listening socket */
 echo(connfd); /* Child services client */
 Close(connfd); /* Child closes connection with client */
 exit(0); /* Child exits */
 }
 Close(connfd); /* Parent closes connected socket (important!) */
 /* Connection to client will not be terminated until both parent's
 and child's copies of connfd are closed (potential mem leak). */
 }
}

Pros/Cons of Processes

CS 4400—Lecture 23 12

● Pro: Clean model for sharing state information between

parents and children.
● file tables are shared (child gets copy of socket descriptors)

● user address spaces are not shared (cannot overwrite virtual

memory of another process)

● Con: Separate address spaces make it more difficult for

processes to share state information.
● must use explicit interprocess communications (IPC)

mechanisms

● examples of explicit IPC?

Threads

CS 4400—Lecture 23 13

● A thread is a logical flow that runs in the context of a

process.
● so far, our programs have consisted of a single thread

● The kernel automatically schedules threads.

● Each thread has its own thread context.
● thread ID (TID)—a unique integer

● stack and stack pointer

● program counter, gen-purpose registers, and condition codes

● All threads running in a process share the entire virtual

address space.

Execution Model

CS 4400—Lecture 23 14

● Each process begins life as a single, main thread.

● The main thread creates a peer thread, and from that

point the two threads run concurrently.

Time

Thread 1
(main thread)

Thread 2
(peer thread)

Thread context switch

Thread context switch

Thread context switch

Control passes to the
peer thread because the
main thread executes a
slow system call or is
interrupted by the
system's interval timer.

Threads vs. Processes

CS 4400—Lecture 23 15

● A thread context switch is faster than a process context

switch.
● a thread context is much smaller than a process context

● Threads are not organized in a rigid parent-child

hierarchy.
● threads associated with a process form a pool of peers,

independent of which threads were created by which other

threads

● a thread can kill any of its peers, or wait for any of its peers to

terminate

● each peer can read or write the same shared data

Example: Pthreads

CS 4400—Lecture 23 16

/* Pthreads is a standard interface for manipulating threads from C
 programs. */

#include "csapp.h"
void* thread(void* vargp);

/* main thread */
int main() {
 pthread_t tid; /* thread ID of peer thread */
 /* create peer thread */
 Pthread_create(&tid, NULL, thread, NULL);
 /*--Now, main thread and peer thread are running concurrently.--*/
 /* wait for peer thread to terminate */
 Pthread_join(tid, NULL);
 /* terminate all threads */
 exit(0);
}

/* The code and local data for a thread are encapsulated in a thread
 routine. Each thread routine takes as input a single generic

pointer and returns a generic pointer. */
void* thread(void* vargp) {
 printf("Hello, world!\n");
 return NULL; /* terminate peer thread */
}

Creating Threads

CS 4400—Lecture 23 17

typedef void* (func)(void*);

int pthread_create(pthread_t* tid,

 pthread_attr_t* attr, func* f, void* arg);

● Creates a new thread and runs the thread routine f in the

context of the new thread and with input argument arg.

● attr can be used to change the default thread attributes.
● we'll always use NULL

● Upon return, tid is set to the ID of the new thread.

● A thread can determine its own thread ID using:
pthread_t pthread_self(void);

Terminating Threads

CS 4400—Lecture 23 18

A thread terminates in one of the following ways.

● Its top-level thread routine returns.

● int pthread_exit(void* thread_return);
● if called by the main thread, it waits for all peer threads

● Calls exit, which terminates the process and all

associated threads.

● Another peer thread calls pthread_cancel with the ID

of the current thread.
int pthread_cancel(pthread_t tid);

Reaping Terminated Threads

CS 4400—Lecture 23 19

int pthread_join(pthread_t tid,
 void** thread_return);

● Blocks until thread tid terminates.

● Assigns the void* returned by the thread routine to the

location pointed to by thread_return.

● Reaps any memory resources held by the terminated

thread.

● Unlike wait_pid, this function can only wait for a

specific thread to terminate.

Detaching Threads

CS 4400—Lecture 23 20

● At any time, a thread is joinable or detached.
● joinable—the thread can be reaped and killed by other threads,

at which time its memory resources are freed

● detached—the thread cannot be reaped or killed by other

threads, and its memory resources are free automatically by the

system when it terminates

● By default, all threads are created joinable.

● To avoid memory leaks, each joinable thread should

either be reaped by another thread or detached.
int pthread_detach(pthread_t tid);

/* echoservert.c - a concurrent echo server using threads */
#include "csapp.h"

void echo(int connfd);
void* thread(void* vargp);

int main(int argc, char** argv) {
 int listenfd, *connfdp, port, clientlen=sizeof(struct sockaddr_in);
 struct sockaddr_in clientaddr;
 pthread_t tid;

 if(argc != 2)
 /* ERROR, QUIT */
 port = atoi(argv[1]);

 listenfd = Open_listenfd(port);
 while(1) {
 connfdp = Malloc(sizeof(int)); /* avoids a race (more next) */
 connfdp = Accept(listenfd, (SA)&clientaddr, &clientlen);
 Pthread_create(&tid, NULL, thread, connfdp);
 }
}

void* thread(void* vargp) {
 int connfd = *((int*)vargp);
 Pthread_detach(pthread_self()); /* because threads are not being */
 Free(vargp); /* explicitly reaped */
 echo(connfd);
 Close(connfd);
 return NULL;
}

Avoiding a Race

CS 4400—Lecture 23 22

● Incorrect approach:

while (1) {
 int connfd = Accept(...);

 Pthread_create(&tid, NULL, thread, &connfd);
 ...
 }

void* thread(void* vargp) {
 int connfd = *((int*)vargp); ...
}

● Introduces a race between the assignment in the peer

thread and the next accept call in the main thread.

● If peer thread's assignment occurs first: works.

● If main thread's accept call occurs first: doesn't work.

Threads Memory Model

CS 4400—Lecture 23 23

● Each thread has its own separate thread context.
● TID, stack, SP, PC, condition codes, and gen-purpose regs

● Each thread shares the rest of the process context with

other threads.
● code, read/write data, the heap, any shared library code/data, and the

set of open files

● if a shared memory location is modified by one thread, the other

threads see the change (if they read the memory loc)

● While thread stacks are usually accessed independently

by their respective threads, this is not a guarantee. Why?

Mapping Variables to Memory

CS 4400—Lecture 23 24

● Global variable—any variable declared outside of a

function.
● one instance that can be referenced by any thread

● Local automatic variables—any variable declared inside

a function without the static attribute.
● each thread's stack contains its own instance (even if multiple

threads execute the same thread routine)

● Local static variables—any variable declared inside a

function with the static attribute.
● like global variables, one instance for all threads

Example: Shared Variables
/* A variable is “shared” iff one of its instances is referenced by
 more than one thread. */
#include "csapp.h"
void* thread(void* vargp);

char** ptr; /* global variable for all threads */

int main() {
 int i; /* the main thread's local auto vars */
 pthread_t tid;
 char* msgs[N] = {"Hello from foo", "Hello from bar"};

 ptr = msgs;
 for(i = 0; i < 2; i++) /* create two peer threads */
 Pthread_create(&tid, NULL, thread, (void*)i);
 Pthread_exit(NULL);
}

void* thread(void* vargp) {
 int myid = (int)vargp; /* a local auto var for each peer thread */
 static int cnt = 0; /* ONE local static var for all peer threads */
 printf("[%d]: %s (cnt=%d)\n", myid, ptr[myid], ++cnt);
}

CS 4400—Lecture 23 25

Exercise: Shared Variables

CS 4400—Lecture 23 26

Let v.t denote that an instance of variable v that resides

on the local stack for thread t, which is either m (main), p0

(peer 0), or p1 (peer 1).

● For each variable instance ptr, cnt, i.m, msgs.m,

myid.p0, and myid.p1:

ref by m? ref by p0? ref by p1?

● Which of the variables ptr, cnt, i, msgs, and myid are

shared?

/* badcnt.c */
#include "csapp.h"

#define NITERS 200000000
void* count(void* arg);

unsigned int cnt = 0; /* shared counter variable */

int main() {
 pthread_t tid1, tid2;

 Pthread_create(&tid1, NULL, count, NULL);
 Pthread_create(&tid2, NULL, count, NULL);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 if(cnt != (unsigned)NITERS*2)
 printf("BOOM! cnt=%d\n", cnt);
 else
 printf("OK cnt=%d\n", cnt);
 exit(0);
}

/* thread routine */
void* count(void* arg) {
 int i;
 for(i = 0; i < NITERS; i++)
 cnt++;
 return NULL;
}

unix> ./badcnt
BOOM! ctr=278125352

unix> ./badcnt
BOOM! ctr=271726247

unix> ./badcnt
BOOM! ctr=276537330

Example: Synchronization Error

CS 4400—Lecture 23 28

.L9:
 movl -4(%ebp),%eax
 cmpl $99999999,%eax
 jle .L12
 jmp .L10
.L12:
 movl ctr,%eax
 leal 1(%eax),%edx
 movl %edx,ctr
.L11:
 movl -4(%ebp),%eax
 leal 1(%eax),%edx
 movl %edx,-4(%ebp)
 jmp .L9
.L10:

Hi : Head

Ti : Tail

Li : Load ctr

Ui : Update ctr

Si : Store ctr

for (i=0; i<NITERS; i++)
 ctr++;

C code for thread i

Asm code for thread i

● H
i
 and T

i
 manipulate only local stack variables.

● L
i
 U

i
 and S

i
 manipulate the shared counter variable.

Example: A Successful Ordering

CS 4400—Lecture 23 29

Step Thread Instr %eax
1

%eax
2

cnt

1 1 H
1

-- -- 0
2 1 L

1
0 -- 0

3 1 U
1

1 -- 0
4 1 S

1
1 -- 1

5 2 H
2

-- -- 1
6 2 L

2
-- 1 1

7 2 U
2

-- 2 1
8 2 S

2
-- 2 2

9 2 T
2

-- 2 2
10 1 T

1
1 -- 2

The OS will choose an interleaving of the instructions in the two
threads.

Example: An Unsuccesful Ordering

CS 4400—Lecture 23 30

Step Thread Instr %eax
1

%eax
2

cnt

1 1 H
1

-- -- 0
2 1 L

1
0 -- 0

3 1 U
1

1 -- 0
4 2 H

2
-- -- 0

5 2 L
2

-- 0 0
6 1 S

1
1 -- 1

7 1 T
1

1 -- 1
8 2 U

2
-- 1 1

9 2 S
2

-- 1 1
10 2 T

2
-- 1 1

There is no way to predict whether the OS will choose a correct
ordering of threads.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

