
CS 4400

Computer Systems

LECTURE 21

Garbage collection

Memory-related bugs in C

Garbage Collector

CS 4400—Lecture 21 2

● A dynamic storage allocator that automatically frees

allocated blocks no longer needed by the program.
● such blocks are known as garbage

● Applications explicitly allocate heap blocks, but never

explicitly free them.

● A large number of approaches for garbage collection

exist. We'll discuss only the Mark&Sweep algorithm.

● Mark&Sweep can be built on top of an existing malloc

package to provide garbage collection for C and C++.

Reachability Graph

CS 4400—Lecture 21 3

● Heap nodes correspond to an allocated heap block.
● p → q means that some location in block p points to some location in

block q

● Root nodes correspond to locations not in the heap.
● can be registers, stack variables, ...

● A node p is reachable if there exists a directed path from

any root node to p.
● Any unreachable node is garbage.

● The garbage collector must maintain the graph and

periodically reclaim unreachable nodes by freeing them.

Example: Reachability Graph

CS 4400—Lecture 21 4

reachable

unreachable (garbage)

heap
nodes

root
nodes

Conservative Garbage Collectors

CS 4400—Lecture 21 5

● Each reachable block is correctly identified as reachable.

● Some unreachable blocks may be incorrectly identified

as reachable.

● C/C++ cannot maintain an exact representation of the

reachability graph, in general.
● Thus, collectors for such languages are conservative.

● Collectors can provide their service on demand, or they

may run as separate threads in parallel with the program.
● How can we incorporate a collector into the malloc package?

Mark&Sweep

CS 4400—Lecture 21 6

● Mark phase—marks all reachable and allocated

descendants of the root nodes.

● Calls mark(p) for every root node p.
● returns immediately if p does not point to an allocated and unmarked

heap block

● otherwise, marks the block and calls itself recursively on each word in

the block

● Sweep phase—frees each unmarked allocated block.

● Calls sweep(begin,end) to iterate over every block in

the heap, freeing any unmarked allocated blocks.

Mark&Sweep Pseudocode

CS 4400—Lecture 21 7

void mark(ptr p) {
 if((b = isPtr(p)) == NULL) /* if p points to some */
 return; /* word in an allocated */
 if(blockMarked(b)) /* block, isPtr returns */
 return; /* a pointer to the */
 markBlock(b); /* beginning of that block */
 len = length(b);
 for(i = 0; i < len; i++) /* for every word ... */
 mark(b[i]);
 return;
}

void sweep(ptr b, ptr end) {
 while(b < end) {
 if(blockMarked(b))
 unmarkBlock(b);
 else if(blockAllocated(b))
 free(b);
 b = nextBlock(b);
 }
 return;
}

Example: Mark&Sweep

before mark:
1 3 4 5 62

root

(Arrows denote memory references.)

Initially, the heap consists of 6 unmarked allocated blocks.
After the mark phase, all nodes reachable from the root are marked.
After the sweep phase, unreachable blocks are reclaimed.

unmarked block header
marked block header

after mark:

F F F F FFafter sweep:

Conservative Mark&Sweep

CS 4400—Lecture 21 9

● Implementing isPtr(p) in C is a challenge.

● C does not tag memory with any type info.
● no obvious way to determine if p is a pointer

● what if int p has the same value as an allocated address?

● Also, no obvious way to determine if p points to some

location in the payload of an allocated block.

● A balanced binary search tree of allocated blocks

(ordered by address) can help to determine if p falls

within the extent of an allocated block.

Dereferencing Bad Pointers

CS 4400—Lecture 21 10

● Large holes of virtual memory are not mapped to any

meaningful data.
● dereferencing a pointer into such a hole causes a seg fault

● Some areas of virtual memory are read-only.
● writing to such an area causes a protection fault

● Common bug: scanf(“%d”, val); // need &
● contents of val are interpreted as an address

● best case—program terminates with an exception

● worst case—contents of val correspond to a valid read/write

area of virtual memory (baffling consequences later)

Reading Uninitialized Memory

CS 4400—Lecture 21 11

Unlike .bss memory locations, heap memory is not

initialized to zero.

/* returns y = Ax */
int* matvec(int** A, int* x, int n) {
 int i, j;

 int* y = Malloc(n * sizeof(int));

 for(i = 0; i < n; i++)
 for(j = 0; j < n; j++)
 y[i] += A[i][j] * x[j];

 return y;
}

Allowing Stack Buffer Overflows

CS 4400—Lecture 21 12

● Recall that buffer overflow is caused by writing to a

target buffer on the stack without examining the size.

void bufoverflow() {
 char buf[64];

 gets(buf);
 return;
}

● Better to use fgets(stdin, 64, buf);

Pointers & Objects Same Size?

CS 4400—Lecture 21 13

● Assuming that pointers and the objects they point to are

the same size is a common mistake.

/* array of n ptrs, each points to m-int array */
int** makeArray1(int n, int m) {
 int i, **A = Malloc(n * sizeof(int));

 for(i = 0; i < n; i++)
 A[i] = Malloc(m * sizeof(int));

 return A;
}

● Runs fine if int and int* are same size.

● What happens if int* is larger?

Off-by-One Errors

CS 4400—Lecture 21 14

/* array of n ptrs, each points to m-int array */
int** makeArray2(int n, int m) {
 int i, **A = Malloc(n * sizeof(int*));

 for(i = 0; i <= n; i++)
 A[i] = Malloc(m * sizeof(int));

 return A;
}

 What happens when we initialize A[n]?

Confusing Object & Pointer

CS 4400—Lecture 21 15

● To avoid manipulating a pointer instead of the object it

points to, be mindful of operator precedence/associativity.

/* remove the first item in a binary heap of
 * size items, then reheapify remaining items */

int* binheapDelete(int** binheap, int* size) {
 int* packet = binheap[0];
 binheap[0] = binheap[*size-1];
 size--; / should be (*size)--; */
 heapify(binheap, *size, 0);
 return packet;
}

● What is the consequence of decrementing the pointer

instead of the actual size?

Misunderstanding Pointer Arithmetic

CS 4400—Lecture 21 16

● Arithmetic operations on pointers are performed in units

that are the size of the objects they (are intended to)

point to, not necessarily 1 byte.

/* search a 0-terminated array of ints and
 return the first occurrence of val */
int* search(int* p, int val) {
 while(*p && *p != val)
 p += sizeof(int); /* should be what? */

 return p;
}

● Looks only at every fourth integer in the array.

Referencing Nonexistent Vars

CS 4400—Lecture 21 17

int* stackref() [
 int val;

 return &val;
}

● The function returns a pointer to the local variable and

then pops its stack frame. p=stackref() remains a

valid memory address.

● What happens if the program later assigns some value to

*p?

● Is there a problem if val is static?

Referencing Data in Free Blocks

CS 4400—Lecture 21 18

 int* heapref(int n, int m) {
 int i, *x, *y;

 x = Malloc(n * sizeof(int));
 ...
 free(x);
 ...

 y = Malloc(m * sizeof(int));
 for(i = 0; i < m; i++)

 y[i] = x[i]++;

 return y;
}

 What are the values in x?

Introducing Memory Leaks

CS 4400—Lecture 21 19

● Memory leaks occur when programmers forget to free

allocated blocks, inadvertently creating garbage (i.e.,

unreachable nodes).

void leak(int n) {
 int* x = Malloc(n * sizeof(int));

 return; /* the block at x is now garbage */
}

● If this function is called frequently, the heap will

gradually fill with garbage (possibly consuming the

entire virtual address space).
● especially important for programs that never terminate

Virtual Memory Summary

CS 4400—Lecture 21 20

● Virtual memory is an abstraction of main memory.
● DRAM as a cache for disk memory

● requires translation from virtual address to physical address using

page tables, whose contents are maintained by the OS

● simplifies memory management and protection

● Even though virtual memory is provided automatically by the

system, it is a finite resource.
● managing VM involves subtle time and space trade-offs

● The difficulty of memory-related errors is an important motivation

for Java and C#.
● eliminate the ability to take addresses of variables

● implicit dynamic storage allocator (no free or delete)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

