
CS 4400

Computer Systems

LECTURE 20

Dynamic memory allocation example

Explicit free lists



Review

CS 4400—Lecture 20      2

●  heap:  allocated and free blocks

●  explicit allocator goals:  max throughput and utilization

●  how are free blocks organized?

●  how are free blocks placed?

●  are free blocks split?

●  are free blocks coalesced?



Example:  Simple Allocator
●  The design space for your allocator is large. 

● choices for block format, free list format, block placement, block 

splitting, and coalescing policies

●  Simple allocator:  implicit free list and immediate 

coalescing with boundary tags.

●  int mm_init(void) initializes the allocator.

●  void* mm_malloc(size_t size) same interface 

as malloc.

●  void mm_free(void* bp) same interface as free.
CS 4400—Lecture 20      3



Implicit Free List Invariant
●  First word is an unused padding word.

●  The prologue block is an 8-byte allocated block.
● consists of only a header and a footer

● created during initialization and never freed

●  Zero or more regular blocks, created by calls to malloc 

or free, follow.

●  The epilogue block, a zero-sized allocated block (header 

only), ends the heap.

static char* heap_listp

8/1 hdr 0/18/1 ftr... hdr ftr... ... hdr ftr...



/* basic constants and macros for manipulating the free list */

#define WSIZE       4       /* word size (bytes) */  
#define DSIZE       8       /* doubleword size (bytes) */
#define CHUNKSIZE  (1<<12)  /* initial heap size (bytes) */
#define OVERHEAD    8       /* overhead of header & footer (bytes) */

#define MAX(x, y) ((x) > (y)? (x) : (y))  

/* Pack a size and allocated bit into a word */
#define PACK(size, alloc)  ((size) | (alloc))

/* Read and write a word at address p */
#define GET(p)       (*(size_t*)(p))
#define PUT(p, val)  (*(size_t*)(p) = (val))  

/* Read the size and allocated fields from address p */
#define GET_SIZE(p)  (GET(p) & ~0x7)
#define GET_ALLOC(p) (GET(p) & 0x1)

/* Given block ptr bp, compute address of its header and footer */
#define HDRP(bp)       ((char*)(bp) - WSIZE)  
#define FTRP(bp)       ((char*)(bp) + GET_SIZE(HDRP(bp)) - DSIZE)

/* Given block ptr bp, compute address of next and previous blocks */
#define NEXT_BLKP(bp)  ((char*)(bp) + GET_SIZE(((char*)(bp) - WSIZE)))
#define PREV_BLKP(bp)  ((char*)(bp) - GET_SIZE(((char*)(bp) - DSIZE)))

CS 4400—Lecture 20      5



/* before calling mm_malloc or mm_free, the allocator must initialize
   the heap by calling mm_init */

int mm_init(void) {
    /* create the initial empty heap – four words */
    if ((heap_listp = mem_sbrk(4*WSIZE)) == NULL)

    return -1;
    PUT(heap_listp, 0);                        /* alignment padding */
    PUT(heap_listp+WSIZE, PACK(OVERHEAD, 1));  /* prologue header */ 
    PUT(heap_listp+DSIZE, PACK(OVERHEAD, 1));  /* prologue footer */ 
    PUT(heap_listp+WSIZE+DSIZE, PACK(0, 1));   /* epilogue header */
    heap_listp += DSIZE;  /* move heap_listp past prologue's header */

    /* extend the empty heap with a free block of CHUNKSIZE bytes */
    if (extend_heap(CHUNKSIZE/WSIZE) == NULL)

    return -1;

    return 0;
}

/* extend_heap requests additional heap space from the mem system,
   rounding up to the nearest multiple of two words

   called here and when malloc is unable to find a suitable fit */

CS 4400—Lecture 20      6



static void* coalesce(void* bp) {
    size_t prev_alloc = GET_ALLOC(FTRP(PREV_BLKP(bp)));
    size_t next_alloc = GET_ALLOC(HDRP(NEXT_BLKP(bp)));
    size_t size = GET_SIZE(HDRP(bp));

    if (prev_alloc && next_alloc) { return bp; }

    else if (prev_alloc && !next_alloc) { 
    size += GET_SIZE(HDRP(NEXT_BLKP(bp)));
    PUT(HDRP(bp), PACK(size, 0));
    PUT(FTRP(bp), PACK(size ,0));
    return(bp);

    }

    else if (!prev_alloc && next_alloc) {     
    size += GET_SIZE(HDRP(PREV_BLKP(bp)));
    PUT(FTRP(bp), PACK(size, 0));
    PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));
    return(PREV_BLKP(bp));

    }

    else {                                     
    size += GET_SIZE(HDRP(PREV_BLKP(bp))) + 

        GET_SIZE(FTRP(NEXT_BLKP(bp)));
    PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));
    PUT(FTRP(NEXT_BLKP(bp)), PACK(size, 0));
    return(PREV_BLKP(bp));

    }
}

void mm_free(void* bp) {
    size_t size = GET_SIZE(HDRP(bp));
    PUT(HDRP(bp), PACK(size, 0));
    PUT(FTRP(bp), PACK(size, 0));
    coalesce(bp);
}



void* mm_malloc(size_t size) {
    size_t asize;      /* adjusted block size */
    size_t extendsize; /* amount to extend heap if no fit */
    char* bp;      

    /* Ignore spurious requests */
    if (size <= 0)

    return NULL;

    /* Adjust block size to include overhead and alignment reqs */
    if (size <= DSIZE)

    asize = DSIZE + OVERHEAD;
    else

    asize = DSIZE * ((size + (OVERHEAD) + (DSIZE-1)) / DSIZE);
    
    /* Search the free list for a fit */
    if ((bp = find_fit(asize)) != NULL) {

    place(bp, asize);
    return bp;

    }

    /* No fit found. Get more memory and place the block */
    extendsize = MAX(asize,CHUNKSIZE);
    if ((bp = extend_heap(extendsize/WSIZE)) == NULL)

    return NULL;
    place(bp, asize);
    return bp;
} 

CS 4400—Lecture 20      8

how to implement for first-fit?

how to implement for block splitting?



static void* find_fit(size_t asize) {
  void* bp;

  /* first fit search */
  for(bp = heap_listp; GET_SIZE(HDRP(bp)) > 0; bp = NEXT_BLKP(bp)) {

 if(!GET_ALLOC(HDRP(bp)) && (asize <= GET_SIZE(HDRP(bp)))) {
   return bp;

    }
  }
  return NULL; /* no fit */
}

static void place(void* bp, size_t asize) {
  size_t csize = GET_SIZE(HDRP(bp));   

  if((csize - asize) >= (DSIZE + OVERHEAD)) {  /* if new free block */
    PUT(HDRP(bp), PACK(asize, 1));             /* would be at least */
    PUT(FTRP(bp), PACK(asize, 1));             /* as big as min */
    bp = NEXT_BLKP(bp);                        /* block size, split */
    PUT(HDRP(bp), PACK(csize-asize, 0));
    PUT(FTRP(bp), PACK(csize-asize, 0));
  }
  else {                                      /* else, do not split */
    PUT(HDRP(bp), PACK(csize, 1));
    PUT(FTRP(bp), PACK(csize, 1));
  }
}

CS 4400—Lecture 20      9



Explicit Free Lists
●  With implicit free lists, block allocation is O(heap size).

●  Better to organize free blocks into some form of explicit 

data structure.

●  The body of a free block can be used to store pointers 

that implement such a data structure.

  

  

  a/f

PAYLOAD

BLOCK SIZE

PADDING

3  2  1  0

BLOCK SIZE   a/f

  a/f
pred pointer

BLOCK SIZE

PADDING

3  2  1  0

BLOCK SIZE   a/f

succ pointerallocated
block

free
block



Explicit Free Lists
●  First-fit allocation time is now O(free block count), but 

time to free a block depends on order in free list.

●  LIFO:  insert newly freed blocks at beginning of the list.
● with first-fit, allocator inspects most recently used blocks first

● cost of free?

●  Address order:  maintain free list such that the address of 

a block in the list is less than the address of its successor.
● memory utilization better for first-fit, linear-time free

●  When is a larger minimum block size required?  (with or 

without boundary tags)
CS 4400—Lecture 20      11



Segregated Free Lists
●  To further reduce the allocation time, maintain multiple 

free lists and contain the search to just one list.
● Each list holds blocks that are roughly the same size.

● This is known as segregated storage.

●  There are many ways to define the size classes.
● powers of 2; e.g., {1}, {2}, {3-4}, {5-8}, {9-15}, ..., {1025-2048}, ... 

● small blocks their own size class, and large blocks by powers of 2

●  The allocator maintains an array of free lists, ordered by 

increasing size.
● First find list with size class that best fits.  

● Then, what if cannot find block that fits in the list?
CS 4400—Lecture 20      12



Simple Segregated Storage
● Each list holds same-sized blocks.  

● E.g., size class {17-32} all size 32.

●  Simply allocate first free block in the appropriate list.

●  Do not split or coalesce.

●  If a list is empty, request more memory, divide, and link to   

form list. 

●  To free, simply insert block at front of appropriate list.

●  Pros:  malloc and free both O(1), very little block overhead

●  Cons:  susceptible to internal and external fragmentation

CS 4400—Lecture 20      13



Segregated Fits

● Each list holds potentially different-sized blocks with sizes that 

fit the size class.
● E.g., block sizes 32 and 40 are in the same list {32-63}.

●  Simply allocate first free block in the appropriate list.
● Split and insert the remaining free block in the appropriate list.

●  If a fit is not found in the list, search the next list, and so on.

●  If no list has a block that fits, request more memory, allocate 

the block, and insert remaining free block in appropriate list. 

●  To free, coalesce and insert resulting block in appropriate list.

CS 4400—Lecture 20      14



realloc
void* mm_realloc(void *ptr, size_t size);

●  If ptr = NULL, equivalent to mm_malloc(size).

●  If size = 0, equivalent to mm_free(ptr).

●  If ptr != NULL, it must have been returned by an earlier 

call to mm_malloc or mm_realloc.
● changes size of the memory block pointed to by ptr (the old block) 

to size bytes and returns the address of the new block 

● address of the new block may or may not be the same as the old

● contents of the new block are the same as those of the old ptr block, 

up to the minimum of the old and new sizes

CS 4400—Lecture 20      15



Notes on Lab 6
●  Read and understand every word of section 9.9.

●  The code requires error-prone casting and pointer 

arithmetic.
● use a debugger to help isolate out-of-bounds memory refs

● encapsulate pointer casting and arithmetic in macros

●  Create and use a heap consistency checker (style points).

●  Work in stages.
● leave realloc until the end—only 2 traces require realloc

● build realloc on top of existing malloc and free, then try a  

stand-alone version for better performance

CS 4400—Lecture 20      16


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

