
CS 4400

Computer Systems

LECTURE 20

Dynamic memory allocation example

Explicit free lists



Review
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●  heap:  allocated and free blocks

●  explicit allocator goals:  max throughput and utilization

●  how are free blocks organized?

●  how are free blocks placed?

●  are free blocks split?

●  are free blocks coalesced?



Example:  Simple Allocator
●  The design space for your allocator is large. 

● choices for block format, free list format, block placement, block 

splitting, and coalescing policies

●  Simple allocator:  implicit free list and immediate 

coalescing with boundary tags.

●  int mm_init(void) initializes the allocator.

●  void* mm_malloc(size_t size) same interface 

as malloc.

●  void mm_free(void* bp) same interface as free.
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Implicit Free List Invariant
●  First word is an unused padding word.

●  The prologue block is an 8-byte allocated block.
● consists of only a header and a footer

● created during initialization and never freed

●  Zero or more regular blocks, created by calls to malloc 

or free, follow.

●  The epilogue block, a zero-sized allocated block (header 

only), ends the heap.

static char* heap_listp

8/1 hdr 0/18/1 ftr... hdr ftr... ... hdr ftr...



/* basic constants and macros for manipulating the free list */

#define WSIZE       4       /* word size (bytes) */  
#define DSIZE       8       /* doubleword size (bytes) */
#define CHUNKSIZE  (1<<12)  /* initial heap size (bytes) */
#define OVERHEAD    8       /* overhead of header & footer (bytes) */

#define MAX(x, y) ((x) > (y)? (x) : (y))  

/* Pack a size and allocated bit into a word */
#define PACK(size, alloc)  ((size) | (alloc))

/* Read and write a word at address p */
#define GET(p)       (*(size_t*)(p))
#define PUT(p, val)  (*(size_t*)(p) = (val))  

/* Read the size and allocated fields from address p */
#define GET_SIZE(p)  (GET(p) & ~0x7)
#define GET_ALLOC(p) (GET(p) & 0x1)

/* Given block ptr bp, compute address of its header and footer */
#define HDRP(bp)       ((char*)(bp) - WSIZE)  
#define FTRP(bp)       ((char*)(bp) + GET_SIZE(HDRP(bp)) - DSIZE)

/* Given block ptr bp, compute address of next and previous blocks */
#define NEXT_BLKP(bp)  ((char*)(bp) + GET_SIZE(((char*)(bp) - WSIZE)))
#define PREV_BLKP(bp)  ((char*)(bp) - GET_SIZE(((char*)(bp) - DSIZE)))
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/* before calling mm_malloc or mm_free, the allocator must initialize
   the heap by calling mm_init */

int mm_init(void) {
    /* create the initial empty heap – four words */
    if ((heap_listp = mem_sbrk(4*WSIZE)) == NULL)

    return -1;
    PUT(heap_listp, 0);                        /* alignment padding */
    PUT(heap_listp+WSIZE, PACK(OVERHEAD, 1));  /* prologue header */ 
    PUT(heap_listp+DSIZE, PACK(OVERHEAD, 1));  /* prologue footer */ 
    PUT(heap_listp+WSIZE+DSIZE, PACK(0, 1));   /* epilogue header */
    heap_listp += DSIZE;  /* move heap_listp past prologue's header */

    /* extend the empty heap with a free block of CHUNKSIZE bytes */
    if (extend_heap(CHUNKSIZE/WSIZE) == NULL)

    return -1;

    return 0;
}

/* extend_heap requests additional heap space from the mem system,
   rounding up to the nearest multiple of two words

   called here and when malloc is unable to find a suitable fit */

CS 4400—Lecture 20      6



static void* coalesce(void* bp) {
    size_t prev_alloc = GET_ALLOC(FTRP(PREV_BLKP(bp)));
    size_t next_alloc = GET_ALLOC(HDRP(NEXT_BLKP(bp)));
    size_t size = GET_SIZE(HDRP(bp));

    if (prev_alloc && next_alloc) { return bp; }

    else if (prev_alloc && !next_alloc) { 
    size += GET_SIZE(HDRP(NEXT_BLKP(bp)));
    PUT(HDRP(bp), PACK(size, 0));
    PUT(FTRP(bp), PACK(size ,0));
    return(bp);

    }

    else if (!prev_alloc && next_alloc) {     
    size += GET_SIZE(HDRP(PREV_BLKP(bp)));
    PUT(FTRP(bp), PACK(size, 0));
    PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));
    return(PREV_BLKP(bp));

    }

    else {                                     
    size += GET_SIZE(HDRP(PREV_BLKP(bp))) + 

        GET_SIZE(FTRP(NEXT_BLKP(bp)));
    PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));
    PUT(FTRP(NEXT_BLKP(bp)), PACK(size, 0));
    return(PREV_BLKP(bp));

    }
}

void mm_free(void* bp) {
    size_t size = GET_SIZE(HDRP(bp));
    PUT(HDRP(bp), PACK(size, 0));
    PUT(FTRP(bp), PACK(size, 0));
    coalesce(bp);
}



void* mm_malloc(size_t size) {
    size_t asize;      /* adjusted block size */
    size_t extendsize; /* amount to extend heap if no fit */
    char* bp;      

    /* Ignore spurious requests */
    if (size <= 0)

    return NULL;

    /* Adjust block size to include overhead and alignment reqs */
    if (size <= DSIZE)

    asize = DSIZE + OVERHEAD;
    else

    asize = DSIZE * ((size + (OVERHEAD) + (DSIZE-1)) / DSIZE);
    
    /* Search the free list for a fit */
    if ((bp = find_fit(asize)) != NULL) {

    place(bp, asize);
    return bp;

    }

    /* No fit found. Get more memory and place the block */
    extendsize = MAX(asize,CHUNKSIZE);
    if ((bp = extend_heap(extendsize/WSIZE)) == NULL)

    return NULL;
    place(bp, asize);
    return bp;
} 
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how to implement for first-fit?

how to implement for block splitting?



static void* find_fit(size_t asize) {
  void* bp;

  /* first fit search */
  for(bp = heap_listp; GET_SIZE(HDRP(bp)) > 0; bp = NEXT_BLKP(bp)) {

 if(!GET_ALLOC(HDRP(bp)) && (asize <= GET_SIZE(HDRP(bp)))) {
   return bp;

    }
  }
  return NULL; /* no fit */
}

static void place(void* bp, size_t asize) {
  size_t csize = GET_SIZE(HDRP(bp));   

  if((csize - asize) >= (DSIZE + OVERHEAD)) {  /* if new free block */
    PUT(HDRP(bp), PACK(asize, 1));             /* would be at least */
    PUT(FTRP(bp), PACK(asize, 1));             /* as big as min */
    bp = NEXT_BLKP(bp);                        /* block size, split */
    PUT(HDRP(bp), PACK(csize-asize, 0));
    PUT(FTRP(bp), PACK(csize-asize, 0));
  }
  else {                                      /* else, do not split */
    PUT(HDRP(bp), PACK(csize, 1));
    PUT(FTRP(bp), PACK(csize, 1));
  }
}
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Explicit Free Lists
●  With implicit free lists, block allocation is O(heap size).

●  Better to organize free blocks into some form of explicit 

data structure.

●  The body of a free block can be used to store pointers 

that implement such a data structure.
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BLOCK SIZE   a/f

  a/f
pred pointer

BLOCK SIZE

PADDING

3  2  1  0

BLOCK SIZE   a/f
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block

free
block



Explicit Free Lists
●  First-fit allocation time is now O(free block count), but 

time to free a block depends on order in free list.

●  LIFO:  insert newly freed blocks at beginning of the list.
● with first-fit, allocator inspects most recently used blocks first

● cost of free?

●  Address order:  maintain free list such that the address of 

a block in the list is less than the address of its successor.
● memory utilization better for first-fit, linear-time free

●  When is a larger minimum block size required?  (with or 

without boundary tags)
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Segregated Free Lists
●  To further reduce the allocation time, maintain multiple 

free lists and contain the search to just one list.
● Each list holds blocks that are roughly the same size.

● This is known as segregated storage.

●  There are many ways to define the size classes.
● powers of 2; e.g., {1}, {2}, {3-4}, {5-8}, {9-15}, ..., {1025-2048}, ... 

● small blocks their own size class, and large blocks by powers of 2

●  The allocator maintains an array of free lists, ordered by 

increasing size.
● First find list with size class that best fits.  

● Then, what if cannot find block that fits in the list?
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Simple Segregated Storage
● Each list holds same-sized blocks.  

● E.g., size class {17-32} all size 32.

●  Simply allocate first free block in the appropriate list.

●  Do not split or coalesce.

●  If a list is empty, request more memory, divide, and link to   

form list. 

●  To free, simply insert block at front of appropriate list.

●  Pros:  malloc and free both O(1), very little block overhead

●  Cons:  susceptible to internal and external fragmentation
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Segregated Fits

● Each list holds potentially different-sized blocks with sizes that 

fit the size class.
● E.g., block sizes 32 and 40 are in the same list {32-63}.

●  Simply allocate first free block in the appropriate list.
● Split and insert the remaining free block in the appropriate list.

●  If a fit is not found in the list, search the next list, and so on.

●  If no list has a block that fits, request more memory, allocate 

the block, and insert remaining free block in appropriate list. 

●  To free, coalesce and insert resulting block in appropriate list.
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realloc
void* mm_realloc(void *ptr, size_t size);

●  If ptr = NULL, equivalent to mm_malloc(size).

●  If size = 0, equivalent to mm_free(ptr).

●  If ptr != NULL, it must have been returned by an earlier 

call to mm_malloc or mm_realloc.
● changes size of the memory block pointed to by ptr (the old block) 

to size bytes and returns the address of the new block 

● address of the new block may or may not be the same as the old

● contents of the new block are the same as those of the old ptr block, 

up to the minimum of the old and new sizes
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Notes on Lab 6
●  Read and understand every word of section 9.9.

●  The code requires error-prone casting and pointer 

arithmetic.
● use a debugger to help isolate out-of-bounds memory refs

● encapsulate pointer casting and arithmetic in macros

●  Create and use a heap consistency checker (style points).

●  Work in stages.
● leave realloc until the end—only 2 traces require realloc

● build realloc on top of existing malloc and free, then try a  

stand-alone version for better performance
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