
Study Group

 Mondays and Wednesdays 11:00 AM – 1:00PM

 Where: Undergraduate lounge near the CS offi ce
 in the MEB building.

 Questions contact Zach Lewis via e-mail:
  Gonzoga56@gmail.com

● Even if you cannot make it for the whole time,
 still feel free to stop by when you're free.

mailto:Gonzoga56@gmail.com


CS 4400

Computer Systems

LECTURE 2

Information storage

Bit-level operations

New to C?



Clicker Question
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What does the following bit pattern represent?

1000 1000 1000 1000 0001 0001 0001 0001

A.    an unsigned integer > 231

B.    a negative integer

C.    a normalized floating-point value

D.    four characters

E.    an x86 assembly-language instruction

F.     I don't know

If you have ResponseCard clicker, channel is 41.

If you are using ResponseWare, session id is CS1400U.



Bits
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●  All information stored by computers reduces to groups of 

two-valued signals, bits.

●  Only when we apply some interpretation to the different 

possible bit patterns does a group of bits have meaning.

●  Three important encodings
●  unsigned integers:  x ≥ 0

●  two's complement integers:  x may be positive, negative, or 0

●  floating-point numbers:  approximate real values

●  We can represent the values of any finite set.



Limitations
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●  Due to using a limited number of bits to encode a 

value, overflow (or underflow) can occur.

●  Computer arithmetic does not follow every rule of 

integer arithmetic.

● The sum of two positive integers is a positive integer.  ×

●  However, computer arithmetic is consistent.

int x = 1000000000;
int y = 2000000000;

int z = x + y;  // z is -1294967296 



Why Do We Care?
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●  By understanding 
●  the ranges of values that can be represented and

●  the properties of arithmetic operations, 

we can write programs that
●  work correctly over the full range of values and

●  are portable across different machines and compilers. 

●  Learning how to implement arithmetic operations by 

directly manipulating the bits that represent numbers is 

critical to understanding the machine-level code generated.



Addressing Bytes
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●  Bits are accessible in 8-bit blocks, bytes.

●  To a machine-level program, memory is simply a very 

large array of bytes, virtual memory.

●  A unique number identifies each such byte, virtual 

memory address.

●  The set of all possible addresses, the virtual memory 

address space, is merely conceptual.  

●  The sophisticated mapping of virtual memory addresses 

to physical (i.e., real) addresses will be covered later.



Binary Notation
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●  Each binary digit has a position p, starting with the least-

significant bit (LSB) at p = 0 and proceeding to the most-

significant bit (MSB) at p = bitCount - 1. 

●  Written with LSB on the right and MSB on the left.

●  If the bit at position p is 1, it contributes 2p to the decimal 

value of the number being represented.

●  x = bit
bitCount – 1

 * 2bitCount - 1 + ... + bit
 1
 * 21 + bit

 0
 * 20

●  Decimal value 23 in binary notation?



Hexadecimal Notation
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●  Base 16, using digits 0-9 and characters A-F to represent 

the 16 possible values.

●  Easiest to convert from binary in 

4-bit groups.

●  In C, numeric constants starting 

with 0x or 0X are interpreted as 

being in hexadecimal.

●  Decimal value 23 in hex?  

Binary value 10011100 in hex?

hex decimal binary
0 0  0000
1 1  0001
2 2  0010
3 3  0011
4 4  0100
5 5  0101
6 6  0110
7 7  0111
8 8  1000
9 9  1001
A     10  1010
B     11  1011
C     12  1100
D     13  1101
E     14  1110
F     15  1111



Conversions
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●  See decimal_to_hex.c

●  See hex_to_decimal.c

●  See binary_conversions.c

  (All sample code is provided on the class website.)



Words
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●  Every computer has a word size, which indicates the size 

of integer and pointer data.

●  How does the word size determine the maximum of the 

virtual address space?

●  For a machine with an n-bit word size, virtual addresses 

can range from 0 to 2n-1.

●  For computers that are 32-bit, the virtual address space is 

limited to 4 GB.  What's the limit for 64-bit?



Data Sizes
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●  Computers and compilers support multiple data formats 

in different lengths.

●  C supports data formats for both integers and floating-pt. 

  typical 32-bit     typical 64-bit

char 1 1
short int  2 2
int   4 4
long int  4 8

char* 4 8

float 4 4
double   8 8



Portability
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●  One aspect of portability is to make programs insensitive 

to the exact sizes of different data types.

●  Because 32-bit machines have been the standard for so 

long, older programs assume the “typical 32-bit” sizes.

●  With the increasing prominence of 64-bit machines, 

hidden word dependences have surfaced as bugs.

●  For example, using an int to store a pointer can be 

problematic.



Addressing Multi-Byte Data
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●  For an object that spans multiple bytes, we must consider
●  how to address the object and 

●  how the bytes are ordered.

●  The object's address is that of the smallest of the bytes.

●  For example, an int stored in four bytes at memory 

locations 0x100, 0x101, 0x102, and 0x103 has 

address 0x100.



Two Byte Ordering Conventions
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●  Consider a w-bit integer with bit representation

x
w-1

 x
w-2

 ... x
1  

x
0
   with MSB x

w-1
 and LSB x

0

●  Assume w is a multiple of 8, to group the bits in bytes.

●  The most-significant byte has bits x
w-1

 x
w-2

 ... x
w-7

 x
w-8

.

●  The least-significant byte has bits x
7
 x

6
 ... x

1
 x

0
.

●  Little endian—the least-significant byte comes first.

●  Big endian—the most-significant byte comes first.



●  Little endian:  x
7
 x

6
 ... x

1
 x

0
  x

15
 x

14
 ... x

9
 x

8
  x

23
 x

22
 ... x

17
 x

16
 ...

●  Big endian:  ... x
23

 x
22

 ... x
17

 x
16

 x
15

 x
14

 ... x
9
 x

8
  x

7
 x

6
 ... x

1
 x

0

●  Consider 

  

  

Example:  Byte Order
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int x = 0x01234567;  // 19088743

int* addr = &x; // 0x100

0x100 0x101 0x102 0x103

 ...  01  23  45  67  ...

 ...   67  45  23  01    ...

?? endian

?? endian

●  When is byte order an issue for the programmer?



Representing Strings
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●  In C, a string is an array of characters terminated with a 

special character '\0' (the null character, value 0x0).

●  Each character is simply an integer code (usually ASCII).

●  Example 1:  “hello”

68 65 6C 6C 6F 00

●  Example 2:  “1234567”

31 32 33 34 35 36 37 00

●  These examples are independent of byte ordering and 

word size.  Why?



Representing Code
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●  From the perspective of the machine, a program is simply 

a sequence of bytes.  

●  Example:  

  

Linux 05 89 e5 8b 45 0c 03 45 08 89 ec 5d c3

Sun 81 c3 e0 08 90 02 00 09

●  Binary code is seldom portable across different machines.

int sum(int x, int y) {

  return x + y;

}



Clicker Question
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  Suppose that

int x = 0xAA;

int y = 0x55;

  What is the result of the following C expression?

x & y

A.    0

B.    1

C.    0x11

D.    0xFF

E.     I don't know



Clicker Question
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  Suppose that

int x = 0xAA;

int y = 0x55;

  What is the result of the following C expression?

x || y

A.    0

B.    1

C.    1, only the value of x is considered

D.    0xFF

E.     I don't know



Boolean Algebra
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By encoding values True and False as 1 and 0, Boolean 

algebra captures the properties of prepositional logic.

 

 

  

  

  

¬ 

0 1

1 0

(NOT, ~ in C)

 0 1

0 0 0

1 0 1

(AND, & in C)

 0 1

0 0 1

1 1 1

(OR, | in C)

 0 1

0 0 1

1 1 0

(XOR, ^ in C)

+



Boolean Algebra Properties (1)
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●  Commutativity a | b = b | a  a & b = b & a 

●  Associativity (a | b) | c = a | (b | c)

(a & b) & c = a & (b & c)

●  Distributivity a & (b | c) = (a & b) | (a & c)

a | (b & c) = (a | b) & (a | c)

●  Identity a | 0 = a a & 1 = a

●  Annihilator (maps to zero) a & 0 = 0

●  Cancellation ~(~a) = a



Boolean Algebra Properties (2)
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●  Complement a | ~a = 1  a & ~a = 0 

●  Idempotency a & a = a a | a = a

●  Absorption a | (a & b) = a

a & (a | b) = a

●  DeMorgan's laws ~(a & b) = ~a | ~b

~(a | b) = ~a & ~b



Operations in C
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●  See bit_level_ops.c

●  See logical_ops.c
● Be careful not to confuse bit-level and logical ops.

● What is short-circuit evaluation?

●  See shift_ops.c
● Left shift always fills with 0s.

● Right shift may be logical (fills w/0s) or arithmetic (fills 

w/value of MSB).



New to C?: Pointers
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●  You are already familiar with accessing variables using 

their names (same as in Java). int num = 10;

●  We can also access num through a second variable that 

holds the address of variable num.

●  The pointer variable ptr holds the address of num.

int* ptr = &num;

●  & immediately to the left of a variable gives an expression 

whose value is the variable's virtual memory address.



Pointers and Addresses
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●  Suppose the address of num is 0x9640.

●  ptr “points to” num:  ptr = &num;

●  To access the contents of a cell whose addresses is in 

ptr, dereference the pointer using *ptr.   *ptr = 3;

......

0x9640

num
...... 0x9640

ptr

......

0x9640

num
...... 0x9640

ptr

3



Declaring Pointers

●  To declare ptr as a pointer variable that can hold the 

address of an int variable: int* ptr;

●  The data type is int*, the variable is ptr. 

●  Be careful when declaring multiple variables on the same 

line.  In           

int* ptr1, ptr2;

ptr2 is a regular int.  To declare two pointers:

int *ptr1, *ptr2;
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Example:  Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;
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Example:  Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

1.5
num1

1293

CS 4400—Lecture 2      29



Example:  Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

1.5
num1

8.3
num2

1293 7757
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Example:  Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

1.5
num1

8.3
num2 temp

1293 7757 2131
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Example:  Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

1.5
num1

8.3
num2 temp

1293 7757

flt_ptr

44552131
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Example:  Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

1.5
num1

8.3
num2 temp

1293 7757
1293
flt_ptr

44552131
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Example:  Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

1.5
num1

8.3
num2 temp

1293 7757
1293
flt_ptr

44552131
1.5
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Example:  Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

8.3
num1

8.3
num2 temp

1293 7757
1293
flt_ptr

44552131
1.5
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Example:  Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp; 8.3
num1

1.5
num2 temp

1293 7757
1293
flt_ptr

44552131
1.5
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Example:  Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp; 8.3
num1

1.5
num2 temp

1293 7757
1293
flt_ptr

44552131
1.5
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Why do we have pointers?  It seems

like a more complicated way to

do something we could already do!



Pointers and Arrays
●  An array name is a pointer constant whose value is the 

address of the first array element, and the value cannot be 

changed.

●  A pointer variable has a value that is an address, and it can 

be changed.

●  Example: float rates[100];
float *ptr;
ptr = rates;  /* needs no & */

●  Last line equivalent to ptr = &rates[0]; .
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Dynamically-Allocated Arrays
●  How do you deal with an array when you don't know at 

compile time how large it should be?

int my_array[100000];  //big enough?

●  Allocate memory at run time, using library routine malloc.

int x = count_of_bytes_given_by_user;

int* my_array = malloc(x);

// my_array is address of first element

// my_array+1 is address of second

●  Much more on dynamic memory allocation to come.
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Pointers and Strings

●  Recall that strings are really char arrays.

char my_string[] = “hello”;

●  We can have a pointer to the array.

char *ptr = my_string;

●  In fact, we can directly initialize the pointer with the 

string.

char *ptr = “hello”;

●  What is the difference in ptr and my_string?
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Pointer Arithmetic
●  Pointer arithmetic can access individual array elements.

●  Ops ++ and -- increment/decrement pointers.

●  The result of incrementing a pointer is that it points to the 

next cell in the array (works regardless of the data size).

●  Other operations may be applied to pointers (+, -, <, >). 

●  Example: float nums[] = { 1.2, 3.4, 5.6 };

float *p1 = nums;

float *p2 = p1 + 2;

Value of *p2?  Is expression p1 < p2 true or false?
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Exercise:  Pointers

Write a function check with two parameters: char* 

str and char c.  

Function check returns 1 if c is in str and 0 

otherwise. 

(See check.c)
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New to C?: Formatted Output
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●  Function printf performs formatted output, in that it

●  controls where data is written, 
●  converts input into the desired type, and
●  writes output in the desired manner.

●  printf(format_str, arg1, ..., argN) prints to 

standard output.

●  Functions for printing to file and to string also exist, and 

are similar (fprintf and sprintf, respectively).

●  Example:  printf(“%i%c%i is %f”, 1, '/', 2, 0.5);



Format String and Address List
●  format_str and argument list (arg1,...argN) 

should correspond.

●  An item in the format_str specifies how the argument 

should be converted for output.

●  The matching item in the argument list specifies what 

value should be printed.  This list may contain any valid C 

expression, even function calls.

●  The format string may contain any ordinary characters and 

conversion codes (denoting how to convert output).
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Conversion Codes

●  %d, %i decimal number

●  %x, %X unsigned hexadecimal number

●  %c single character

●  %s characters from string until reaching '\0'

●  %f floating-point number (default precision: 6)

●  See K&R for more conversion codes and options (field 

width, max chars/digits printed, alignment, ...).
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New to C?: Casting
●  In C, it is possible to explicitly convert one data type to 

another (pointer types included).  

●  For example, suppose that x is of type int.  The 

expression (float) x is the original value of x 

converted to float.

●  Note that the actual value and type of x are unchanged.

●  Casting may also be implicit.  In mixed-type expressions, 

the types of some values are (invisibly) changed.
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Example: Casting
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casting.c

#include <stdio.h>

int main(void) {

  int miles;
  int hours;
  float mph;

  
  miles = 455;

hours = 3;

mph = miles / hours;
  printf(“%f\n”, mph);

  mph = (float) miles / (float) hours; 
printf(“%f\n”, mph); 

  return 0;
}

unix> gcc casting.c
unix> ./a.out
151.000000
151.666672



Mixed-Mode Arithmetic
●  When variables of different types are included in a single 

arithmetic expression, the values are converted to the 

same type before the operation is performed.

●  For example, the value of int variable x is converted to 

type float before the division is performed.

x / 4.0

●  Again, the actual type and value of x are unchanged.

●  Conversion to the same, more general type.  E.g., 

converts int to float, not float to int.
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Type Promotion Hierarchy

Types are organized into a promotion hierarchy.

long double
double
float
unsigned long
long
unsigned int
int
unsigned short 
short
unsigned char
char

m
or

e 
ge

ne
ra

l
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Example:  Mixed-Mode Arithmetic
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●  Pay attention to when the type conversion occurs.

●  Notice difference in implicit and explicit conversion.

●  Example: 
float a, b;
int c, d;

b = 1.0;
c = -5;
d = 2;

a = b * (c / d);    /* a is -2.0 */
a = b * ((float)c / d); /* a is -2.5 */
a = b / c * d;    /* a is -0.4 */
a = (int)(b / c) * d;   /* a is 0.0 */
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