
Study Group

 Mondays and Wednesdays 11:00 AM – 1:00PM

 Where: Undergraduate lounge near the CS offi ce
 in the MEB building.

 Questions contact Zach Lewis via e-mail:
 Gonzoga56@gmail.com

● Even if you cannot make it for the whole time,
 still feel free to stop by when you're free.

mailto:Gonzoga56@gmail.com

CS 4400

Computer Systems

LECTURE 2

Information storage

Bit-level operations

New to C?

Clicker Question

CS 4400—Lecture 2 3

What does the following bit pattern represent?

1000 1000 1000 1000 0001 0001 0001 0001

A. an unsigned integer > 231

B. a negative integer

C. a normalized floating-point value

D. four characters

E. an x86 assembly-language instruction

F. I don't know

If you have ResponseCard clicker, channel is 41.

If you are using ResponseWare, session id is CS1400U.

Bits

CS 4400—Lecture 2 4

● All information stored by computers reduces to groups of

two-valued signals, bits.

● Only when we apply some interpretation to the different

possible bit patterns does a group of bits have meaning.

● Three important encodings
● unsigned integers: x ≥ 0

● two's complement integers: x may be positive, negative, or 0

● floating-point numbers: approximate real values

● We can represent the values of any finite set.

Limitations

CS 4400—Lecture 2 5

● Due to using a limited number of bits to encode a

value, overflow (or underflow) can occur.

● Computer arithmetic does not follow every rule of

integer arithmetic.

● The sum of two positive integers is a positive integer. ×

● However, computer arithmetic is consistent.

int x = 1000000000;
int y = 2000000000;

int z = x + y; // z is -1294967296

Why Do We Care?

CS 4400—Lecture 2 6

● By understanding
● the ranges of values that can be represented and

● the properties of arithmetic operations,

we can write programs that
● work correctly over the full range of values and

● are portable across different machines and compilers.

● Learning how to implement arithmetic operations by

directly manipulating the bits that represent numbers is

critical to understanding the machine-level code generated.

Addressing Bytes

CS 4400—Lecture 2 7

● Bits are accessible in 8-bit blocks, bytes.

● To a machine-level program, memory is simply a very

large array of bytes, virtual memory.

● A unique number identifies each such byte, virtual

memory address.

● The set of all possible addresses, the virtual memory

address space, is merely conceptual.

● The sophisticated mapping of virtual memory addresses

to physical (i.e., real) addresses will be covered later.

Binary Notation

CS 4400—Lecture 2 8

● Each binary digit has a position p, starting with the least-

significant bit (LSB) at p = 0 and proceeding to the most-

significant bit (MSB) at p = bitCount - 1.

● Written with LSB on the right and MSB on the left.

● If the bit at position p is 1, it contributes 2p to the decimal

value of the number being represented.

● x = bit
bitCount – 1

 * 2bitCount - 1 + ... + bit
 1
 * 21 + bit

 0
 * 20

● Decimal value 23 in binary notation?

Hexadecimal Notation

CS 4400—Lecture 2

● Base 16, using digits 0-9 and characters A-F to represent

the 16 possible values.

● Easiest to convert from binary in

4-bit groups.

● In C, numeric constants starting

with 0x or 0X are interpreted as

being in hexadecimal.

● Decimal value 23 in hex?

Binary value 10011100 in hex?

hex decimal binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Conversions

CS 4400—Lecture 2 10

● See decimal_to_hex.c

● See hex_to_decimal.c

● See binary_conversions.c

 (All sample code is provided on the class website.)

Words

CS 4400—Lecture 2 11

● Every computer has a word size, which indicates the size

of integer and pointer data.

● How does the word size determine the maximum of the

virtual address space?

● For a machine with an n-bit word size, virtual addresses

can range from 0 to 2n-1.

● For computers that are 32-bit, the virtual address space is

limited to 4 GB. What's the limit for 64-bit?

Data Sizes

CS 4400—Lecture 2 12

● Computers and compilers support multiple data formats

in different lengths.

● C supports data formats for both integers and floating-pt.

 typical 32-bit typical 64-bit

char 1 1
short int 2 2
int 4 4
long int 4 8

char* 4 8

float 4 4
double 8 8

Portability

CS 4400—Lecture 2 13

● One aspect of portability is to make programs insensitive

to the exact sizes of different data types.

● Because 32-bit machines have been the standard for so

long, older programs assume the “typical 32-bit” sizes.

● With the increasing prominence of 64-bit machines,

hidden word dependences have surfaced as bugs.

● For example, using an int to store a pointer can be

problematic.

Addressing Multi-Byte Data

CS 4400—Lecture 2 14

● For an object that spans multiple bytes, we must consider
● how to address the object and

● how the bytes are ordered.

● The object's address is that of the smallest of the bytes.

● For example, an int stored in four bytes at memory

locations 0x100, 0x101, 0x102, and 0x103 has

address 0x100.

Two Byte Ordering Conventions

CS 4400—Lecture 2 15

● Consider a w-bit integer with bit representation

x
w-1

 x
w-2

 ... x
1

x
0
 with MSB x

w-1
 and LSB x

0

● Assume w is a multiple of 8, to group the bits in bytes.

● The most-significant byte has bits x
w-1

 x
w-2

 ... x
w-7

 x
w-8

.

● The least-significant byte has bits x
7
 x

6
 ... x

1
 x

0
.

● Little endian—the least-significant byte comes first.

● Big endian—the most-significant byte comes first.

● Little endian: x
7
 x

6
 ... x

1
 x

0
 x

15
 x

14
 ... x

9
 x

8
 x

23
 x

22
 ... x

17
 x

16
 ...

● Big endian: ... x
23

 x
22

 ... x
17

 x
16

 x
15

 x
14

 ... x
9
 x

8
 x

7
 x

6
 ... x

1
 x

0

● Consider

Example: Byte Order

CS 4400—Lecture 2 16

int x = 0x01234567; // 19088743

int* addr = &x; // 0x100

0x100 0x101 0x102 0x103

 ... 01 23 45 67 ...

 ... 67 45 23 01 ...

?? endian

?? endian

● When is byte order an issue for the programmer?

Representing Strings

CS 4400—Lecture 2 17

● In C, a string is an array of characters terminated with a

special character '\0' (the null character, value 0x0).

● Each character is simply an integer code (usually ASCII).

● Example 1: “hello”

68 65 6C 6C 6F 00

● Example 2: “1234567”

31 32 33 34 35 36 37 00

● These examples are independent of byte ordering and

word size. Why?

Representing Code

CS 4400—Lecture 2 18

● From the perspective of the machine, a program is simply

a sequence of bytes.

● Example:

Linux 05 89 e5 8b 45 0c 03 45 08 89 ec 5d c3

Sun 81 c3 e0 08 90 02 00 09

● Binary code is seldom portable across different machines.

int sum(int x, int y) {

 return x + y;

}

Clicker Question

CS 4400—Lecture 2 19

 Suppose that

int x = 0xAA;

int y = 0x55;

 What is the result of the following C expression?

x & y

A. 0

B. 1

C. 0x11

D. 0xFF

E. I don't know

Clicker Question

CS 4400—Lecture 2 20

 Suppose that

int x = 0xAA;

int y = 0x55;

 What is the result of the following C expression?

x || y

A. 0

B. 1

C. 1, only the value of x is considered

D. 0xFF

E. I don't know

Boolean Algebra

CS 4400—Lecture 2 21

By encoding values True and False as 1 and 0, Boolean

algebra captures the properties of prepositional logic.

¬

0 1

1 0

(NOT, ~ in C)

 0 1

0 0 0

1 0 1

(AND, & in C)

 0 1

0 0 1

1 1 1

(OR, | in C)

 0 1

0 0 1

1 1 0

(XOR, ^ in C)

+

Boolean Algebra Properties (1)

CS 4400—Lecture 2 22

● Commutativity a | b = b | a a & b = b & a

● Associativity (a | b) | c = a | (b | c)

(a & b) & c = a & (b & c)

● Distributivity a & (b | c) = (a & b) | (a & c)

a | (b & c) = (a | b) & (a | c)

● Identity a | 0 = a a & 1 = a

● Annihilator (maps to zero) a & 0 = 0

● Cancellation ~(~a) = a

Boolean Algebra Properties (2)

CS 4400—Lecture 2 23

● Complement a | ~a = 1 a & ~a = 0

● Idempotency a & a = a a | a = a

● Absorption a | (a & b) = a

a & (a | b) = a

● DeMorgan's laws ~(a & b) = ~a | ~b

~(a | b) = ~a & ~b

Operations in C

CS 4400—Lecture 2 24

● See bit_level_ops.c

● See logical_ops.c
● Be careful not to confuse bit-level and logical ops.

● What is short-circuit evaluation?

● See shift_ops.c
● Left shift always fills with 0s.

● Right shift may be logical (fills w/0s) or arithmetic (fills

w/value of MSB).

New to C?: Pointers

CS 4400—Lecture 2 25

● You are already familiar with accessing variables using

their names (same as in Java). int num = 10;

● We can also access num through a second variable that

holds the address of variable num.

● The pointer variable ptr holds the address of num.

int* ptr = #

● & immediately to the left of a variable gives an expression

whose value is the variable's virtual memory address.

Pointers and Addresses

CS 4400—Lecture 2 26

● Suppose the address of num is 0x9640.

● ptr “points to” num: ptr = #

● To access the contents of a cell whose addresses is in

ptr, dereference the pointer using *ptr. *ptr = 3;

......

0x9640

num
...... 0x9640

ptr

......

0x9640

num
...... 0x9640

ptr

3

Declaring Pointers

● To declare ptr as a pointer variable that can hold the

address of an int variable: int* ptr;

● The data type is int*, the variable is ptr.

● Be careful when declaring multiple variables on the same

line. In

int* ptr1, ptr2;

ptr2 is a regular int. To declare two pointers:

int *ptr1, *ptr2;

CS 4400—Lecture 2 27

Example: Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

CS 4400—Lecture 2 28

Example: Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

1.5
num1

1293

CS 4400—Lecture 2 29

Example: Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

1.5
num1

8.3
num2

1293 7757

CS 4400—Lecture 2 30

Example: Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

1.5
num1

8.3
num2 temp

1293 7757 2131

CS 4400—Lecture 2 31

Example: Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

1.5
num1

8.3
num2 temp

1293 7757

flt_ptr

44552131

CS 4400—Lecture 2 32

Example: Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

1.5
num1

8.3
num2 temp

1293 7757
1293
flt_ptr

44552131

CS 4400—Lecture 2 33

Example: Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

1.5
num1

8.3
num2 temp

1293 7757
1293
flt_ptr

44552131
1.5

CS 4400—Lecture 2 34

Example: Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp;

8.3
num1

8.3
num2 temp

1293 7757
1293
flt_ptr

44552131
1.5

CS 4400—Lecture 2 35

Example: Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp; 8.3
num1

1.5
num2 temp

1293 7757
1293
flt_ptr

44552131
1.5

CS 4400—Lecture 2

Example: Swapping Variables
float num1 = 1.5;

float num2 = 8.3;

float temp;

float* flt_ptr;

flt_ptr = &num1;

temp = *flt_ptr;

*flt_ptr = num2;

num2 = temp; 8.3
num1

1.5
num2 temp

1293 7757
1293
flt_ptr

44552131
1.5

CS 4400—Lecture 2

Why do we have pointers? It seems

like a more complicated way to

do something we could already do!

Pointers and Arrays
● An array name is a pointer constant whose value is the

address of the first array element, and the value cannot be

changed.

● A pointer variable has a value that is an address, and it can

be changed.

● Example: float rates[100];
float *ptr;
ptr = rates; /* needs no & */

● Last line equivalent to ptr = &rates[0]; .
CS 4400—Lecture 2 38

Dynamically-Allocated Arrays
● How do you deal with an array when you don't know at

compile time how large it should be?

int my_array[100000]; //big enough?

● Allocate memory at run time, using library routine malloc.

int x = count_of_bytes_given_by_user;

int* my_array = malloc(x);

// my_array is address of first element

// my_array+1 is address of second

● Much more on dynamic memory allocation to come.

CS 4400—Lecture 2 39

Pointers and Strings

● Recall that strings are really char arrays.

char my_string[] = “hello”;

● We can have a pointer to the array.

char *ptr = my_string;

● In fact, we can directly initialize the pointer with the

string.

char *ptr = “hello”;

● What is the difference in ptr and my_string?

CS 4400—Lecture 2 40

Pointer Arithmetic
● Pointer arithmetic can access individual array elements.

● Ops ++ and -- increment/decrement pointers.

● The result of incrementing a pointer is that it points to the

next cell in the array (works regardless of the data size).

● Other operations may be applied to pointers (+, -, <, >).

● Example: float nums[] = { 1.2, 3.4, 5.6 };

float *p1 = nums;

float *p2 = p1 + 2;

Value of *p2? Is expression p1 < p2 true or false?

CS 4400—Lecture 2 41

Exercise: Pointers

Write a function check with two parameters: char*

str and char c.

Function check returns 1 if c is in str and 0

otherwise.

(See check.c)

CS 4400—Lecture 2 42

New to C?: Formatted Output

CS 4400—Lecture 2 43

● Function printf performs formatted output, in that it

● controls where data is written,
● converts input into the desired type, and
● writes output in the desired manner.

● printf(format_str, arg1, ..., argN) prints to

standard output.

● Functions for printing to file and to string also exist, and

are similar (fprintf and sprintf, respectively).

● Example: printf(“%i%c%i is %f”, 1, '/', 2, 0.5);

Format String and Address List
● format_str and argument list (arg1,...argN)

should correspond.

● An item in the format_str specifies how the argument

should be converted for output.

● The matching item in the argument list specifies what

value should be printed. This list may contain any valid C

expression, even function calls.

● The format string may contain any ordinary characters and

conversion codes (denoting how to convert output).
CS 4400—Lecture 2 44

Conversion Codes

● %d, %i decimal number

● %x, %X unsigned hexadecimal number

● %c single character

● %s characters from string until reaching '\0'

● %f floating-point number (default precision: 6)

● See K&R for more conversion codes and options (field

width, max chars/digits printed, alignment, ...).

CS 4400—Lecture 2 45

New to C?: Casting
● In C, it is possible to explicitly convert one data type to

another (pointer types included).

● For example, suppose that x is of type int. The

expression (float) x is the original value of x

converted to float.

● Note that the actual value and type of x are unchanged.

● Casting may also be implicit. In mixed-type expressions,

the types of some values are (invisibly) changed.

CS 4400—Lecture 2 46

Example: Casting

CS 4400—Lecture 2 47

casting.c

#include <stdio.h>

int main(void) {

 int miles;
 int hours;
 float mph;

 miles = 455;

hours = 3;

mph = miles / hours;
 printf(“%f\n”, mph);

 mph = (float) miles / (float) hours;
printf(“%f\n”, mph);

 return 0;
}

unix> gcc casting.c
unix> ./a.out
151.000000
151.666672

Mixed-Mode Arithmetic
● When variables of different types are included in a single

arithmetic expression, the values are converted to the

same type before the operation is performed.

● For example, the value of int variable x is converted to

type float before the division is performed.

x / 4.0

● Again, the actual type and value of x are unchanged.

● Conversion to the same, more general type. E.g.,

converts int to float, not float to int.

CS 4400—Lecture 2 48

Type Promotion Hierarchy

Types are organized into a promotion hierarchy.

long double
double
float
unsigned long
long
unsigned int
int
unsigned short
short
unsigned char
char

m
or

e
ge

ne
ra

l
CS 4400—Lecture 2 49

Example: Mixed-Mode Arithmetic

CS 4400—Lecture 2 50

● Pay attention to when the type conversion occurs.

● Notice difference in implicit and explicit conversion.

● Example:
float a, b;
int c, d;

b = 1.0;
c = -5;
d = 2;

a = b * (c / d); /* a is -2.0 */
a = b * ((float)c / d); /* a is -2.5 */
a = b / c * d; /* a is -0.4 */
a = (int)(b / c) * d; /* a is 0.0 */

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

