
CS 4400

Computer Systems

LECTURE 18

Virtual memory

Main memory as a cache

Address translation



Virtual Memory
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●  Virtual memory (VM) is an abstraction of main memory.

●  VM treats main memory (MM) as a cache for disk.
● transfers data back and forth between disk and MM, as needed

●  VM simplifies memory management.
● provides each process with a uniform address space

●  VM protects the address space of each process.
● prevents some process from inadvertently writing to the memory used 

by another process

●  VM works silently and automatically without any 

intervention from the application programmer.



Why Care About VM
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●  VM pervades all levels of computer systems.
● hardware exceptions, linkers, loaders, processes, ...

●  VM gives applications powerful capabilities.
● create/destroy chunks of memory, map chunks of memory to       

portions of disk, share memory with other processes

●  VM, used improperly, can lead to difficult bugs.
● any variable reference, pointer dereference, or malloc call         

uses VM

● possible behaviors:  “Segmentation fault”; long, silent run           

before crashing; run to completion with incorrect results



Physical Addressing
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●  MM is an array of M contiguous byte-sized cells.
● each byte has a unique physical address (PA)

●  Physical addressing is using the PA to access memory.
● used by early PCs, embedded microcontrollers, and others

●  When the CPU executes a load instruction, it generates 

a PA x and passes x to main memory (via memory bus).

●  Main memory fetches the word starting at PA x and 

returns it to the CPU.
● which then stores the data word in a register



Virtual Addressing
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●  Another form of addressing uses a virtual address (VA).

●  Virtual addressing is using the VA to access memory.
● used by modern processors for general-purpose computing

●  CPU generates a VA y, which is converted to the 

appropriate PA before being passed to main memory.

●  The translation of VA to PA requires close cooperation 

between the CPU hardware and the OS.
● memory management unit (MMU)—dedicated CPU hardware    

for translating VAs, using look-up table stored in memory



Address Space
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●  Address space—ordered set of integer addresses (> 0).
● if addresses are consecutive, the address space is linear

●  Virtual address space—N = 2n virtual addresses.
● n is the number of bits needed to represent the largest address

● typically, modern virtual address spaces are 32-bit or 64-bit

●  Physical address space—corresponds to the M = 2m bytes 

of physical memory in the system.

●  Data objects are distinguished from their addresses.
● each byte of main memory has a VA and a PA



cached
uncached

Main Memory as a Cache
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●  Think of virtual memory as an array of N contiguous 

byte-sized cells stored on disk.
● each byte has a unique VA that is an index into the array

●  Data on disk is partitioned into blocks (called pages) that 

serve as the 

transfer units.

●  page size P=2p

●  How many VPs? 

PPs?
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N-1
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M-1

PP 0

PP 1

VP 0

VP 1

virtual pages (VPs)
stored on disk

physical pages (PPs)
cached in DRAM



DRAM Cache Organization
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●  Misses in DRAM caches are much more expensive than 

those in SRAM caches.
● DRAM is ~10 times slower than SRAM

● disk is ~100K times slower than DRAM

● cost of reading the first byte from a disk sector is ~100K times    

slower than reading successive bytes in the sector

●  The organization of DRAM caches is driven by

the large miss penalty 
● DRAM caches are fully associative

and the expense of accessing the first disk sector byte 
● virtual pages are large (4-8 KB)



Page Table
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●  If a VP is cached in DRAM, which physical page is it 

cached in?

●  If there is a miss, where is the virtual page stored on 

disk?  Which page in physical memory is the victim?

●  The page table, a data structure stored in physical 

memory, maps virtual addresses to physical addresses.

●  Address translation hardware reads the page table.

●  The OS maintains the contents of the page table and 

transfers pages between disk and DRAM.



Page Table Entries
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●  A page table is array of page table entries (PTEs).

●  Each VP in the virtual address space has a PTE at a fixed 

offset in the page table.

●  Assume that each PTE consists of a valid bit and a k-bit 

address field.
● valid bit indicates if the VP is currently cached in DRAM

● if valid bit = 1, the address field indicates the start of the              

corresponding PP in DRAM

● if valid bit = 0, a null address indicates an unallocated VP and a  non-

null address points to the start of the VP on disk



Example:  Page Table
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PP 3

0
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1

0

0

0

1

1

1
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VP 3

VP 4
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virtual memory (disk)

n = 16, #PTEs = 8, page size = ?



Page Hit
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●  When the CPU reads a word of virtual memory contained 

in VP 2 (cached in DRAM), a page hit occurs.

●  The memory management unit (MMU) is dedicated 

hardware on the CPU chip that uses the virtual address to 

locate PTE 2 and read it from memory.

●  Because the valid bit of PTE 2 is set, the MMU knows 

that VP 2 is cached.

●  Then the MMU gets the starting address of the cached 

page in PP 0 from the address field of PTE 2.



Page Fault
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●  Page fault—a DRAM cache miss.

●  When the CPU reads a word of virtual memory contained 

in VP 3 (uncached), a page fault occurs.

●  MMU reads PTE 3 from memory (valid bit indicates that 

VP 3 is uncached) and triggers a page fault exception.

●  The page fault exception handler (in the kernel) selects a 

victim page (say, VP 4 in PP 3). 

●  The kernel modifies PTE 4 and PTE 3.  How?

●  At handler return, faulting instruction restarts—page hit.



Example:  Page Fault
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VP 7
VP 3

PP 0
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Read of VP 3 caused page fault.  
VP 3 replaced VP 4 in DRAM (PP 3).



Memory Management
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The OS provides a separate page table, and thus a separate 

virtual address space, for each process.



VM Simplifies . . .
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●  Linking—each process uses the same basic format for its 

memory image, regardless of where code and data 

actually reside in physical memory (allows uniformity).
● .text always starts at virtual address 0x08048000

●  Sharing—provides a consistent mechanism for processes 

to share code and/or data.
● mapping appropriate VPs in different processes to the same PP

●  Memory allocation—simple mechanism for allocating 

additional memory to user processes (heap space).
● allocate k contiguous VPs, no need for PPs to be contiguous



Memory Protection
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●  The OS must control access to the memory system.

●  A user process should be prevented from
● modifying its read-only text section

● reading or modifying any code/data in the kernel

● reading or modifying the private memory of other processes

● modifying any VPs shared with other processes (unless all parties 

explicitly allow it)

●  This can be accomplished by adding permission bits to 

the PTE the indicate a process's read/modify access.
● if an instruction violates these permissions, CPU triggers a general 

protection fault (typically “segmentation fault”)



p

p

Address Translation
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physical page number (PPN)

Page
Table

physical page offset (PPO)
0m-1

valid

physical page number (PPN)
p-1

PHYSICAL ADDRESS

virtual page offset (VPO)
0n-1

virtual page number (VPN)
p-1

VIRTUAL ADDRESS

page table
base register

if valid=0, page is not in 
memory—page fault



Page Hit Actions
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1.  The processor generates a virtual address and sends it to 

 the memory management unit (MMU).

2.  The MMU generates the page table entry (PTE) address 

 and requests it from the cache/main memory.

3.  The cache/main memory returns the PTE to the MMU.

4.  The MMU constructs the physical address and sends it 

 to the cache/main memory.

5.  The cache/main memory returns the requested data 

 word to the processor.



Page Fault Actions
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1-3.  Same as for a page hit. (PTE returned to MMU)

4.  (PTE valid=0) The MMU triggers a page fault 

 exception, transferring control to fault handler in OS.

5.  The fault handler identifies a victim page in physical 

 memory (pages out to disk if needs write-back).

6.  The fault handler pages in the new page and updates the 

 PTE in memory.

7.  The fault handler returns to original process, restarting 

 the faulting instruction—CPU resends VA, page hit.



Exercise:  Page Sizes
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Suppose 32-bit virtual addresses, 24-bit physical addresses.

●  page size P = 1 KB
● 232 / 210 = 222, 22 virtual page number (VPN) bits

● 10 virtual page offset (VPO) bits

● 224 / 210 = 214, 14 physical page number (PPN) bits

● 10 virtual page offset (PPO) bits

●  What page size P will give 20 VPN bits and 12 PPN bits? 

 CLICK:
A.  2 KB C.  8 KB

B.  4 KB D.  none of the above



p

Translation Lookaside Buffer
●  For every virtual address generated, the MMU must refer 

to a PTE to get the corresponding physical address.

●  If the PTE is cached in L1, this costs a few cycles.  If not, 

it costs tens to hundreds of cycles (L2 or main memory).

●  A translation lookaside buffer (TLB), small cache of 

PTEs in the MMU, can eliminate this cost.

●  TLB is virtually addressed and each block holds a PTE.
● typically has a high degree of associativity, T=2t sets

PPO
0n-1

TLB tag
p-1

TLB index
p+t-1p+t

VPN



TLB Hit Actions
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1.  CPU generates virtual address.

2.  The MMU looks up the appropriate PTE in the TLB, 

 using the VPN bits.

3.  (TLB hit) The MMU fetches the PTE from the TLB.

4.  The MMU constructs the physical address and sends it 

 to the cache/main memory.

5.  The cache/main memory returns the requested data 

 word to the processor.



TLB Miss Actions
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1-2.  Same as for a TLB hit. (TLB look-up)

3.  (TLB miss) MMU generates the PTE address and 

 requests it from the cache/main memory.

4.  The TLB is updated with this PTE, evicting another 

 PTE from the TLB.

5.  The MMU constructs the physical address and sends it 

 to the cache/main memory.

6.  The cache/main memory returns the requested data 

 word to the processor.



Exercise:  Address Translation
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Assume: memory accesses to are to 1-byte words
n = 14 (virtual), m = 12 (physical), P = 64 (page size)
TLB is 4-way set associative with 16 total entries

●  Number of VPs?  

PPs?  

PTEs?

●  Which virtual address bits 13-0 are the VPN?  

the VPO?

●  Which physical address bits 11-0 are the PPN?  

the PPO?

●  Which bits of the VPN are the TLB set index?  

the TLB tag?



Exercise:  Address Translation

set tag PPN  valid

0 03 --   0     
1 03 2D   1     
2  02 --   0   
3  07 --   0

tag PPN  valid

09 0D   1     
02 --   0     
08 --   0   
03 0D   1

tag PPN  valid

00 --   0     
04 --   0     
06 --   0   
0A 34   1

tag PPN  valid

07   02   1     
0A --   0     
03 --   0   
02 --   0

TLB: 4-way, 16 entries, 4 sets

VPN  PPN valid

00    28   1
01    --   0
02    33   1
03    02   1
04    --   0
05    16   1
06    --   0
07    --   0

VPN  PPN valid

08     13   1
09    17   1
0A    09   1
0B      --   0
0C    --   0
0D    2D   1
0E     11   1
0F    0D   1

Page Table (first 16 entries)
● What happens when a load reads    

   the byte at VA 0x03d4?

● What is the VPN?  

   the VPO?

● Does the TLB have a cached      

   copy of the PTE?

● What is the PPN?  

   the PPO?



Exercise:  Address Translation
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set tag valid  blk0  blk1  blk2  blk3

0 19 1     99     11     23     11
1 15 0     --       --      --      --
2 1B 1     00     02     04     08
3 36 0     --       --      --      --
4 32 1     43     6D     8F     09
5 0D 1     36     72     F0     1D
6 31 0     --       --      --      --
7 16 1     11     C2     DF     03
8 24 1     3A    00     51     89
9 2D 0     --       --      --      --
10 2D 1     93     15     DA    3B
11   0B 0     --       --      --      --
12 12 0     --       --      --      --
13  16 1     04     96     34     15
14   13 1     83     77     1B     D3
15  14 0     --       --      --      --

L1 cache: DM, 4-byte block, 16 sets

● PPN 0x0D and PPO 0x14 form 

   12-bit physical address 0x354.

● Which bits of the PA are the         

   cache block offset?  

   the cache set index?  

   the cache tag?

●  L1 cache hit or miss?



set tag valid  blk0  blk1  blk2  blk3

0 19 1     99     11     23     11
1 15 0     --       --      --      --
2 1B 1     00     02     04     08
3 36 0     --       --      --      --
4 32 1     43     6D     8F     09
5 0D 1     36     72     F0     1D
6 31 0     --       --      --      --
7 16 1     11     C2     DF     03
8 24 1     3A    00     51     89
9 2D 0     --       --      --      --
10 2D 1     93     15     DA    3B
11   0B 0     --       --      --      --
12 12 0     --       --      --      --
13  16 1     04     96     34     15
14   13 1     83     77     1B     D3
15  14 0     --       --      --      --

L1 cache: DM, 4-byte block, 16 sets

set tag PPN  valid

0 03 --   0     
1 03 2D   1     
2  02 --   0   
3  07 --   0

tag PPN  valid

09 0D   1     
02 --   0     
08 --   0   
03 0D   1

tag PPN  valid

00 --   0     
04 --   0     
06 --   0   
0A 34   1

tag PPN  valid

07   02   1     
0A --   0     
03 --   0   
02 --   0

TLB: 4-way, 16 entries, 4 sets

VPN  PPN valid

00    28   1
01    --   0
02    33   1
03    02   1
04    --   0
05    16   1
06    --   0
07    --   0

VPN  PPN valid

08     13   1
09    17   1
0A    09   1
0B      --   0
0C    --   0
0D    2D   1
0E     11   1
0F    0D   1

Page Table (first 16 entries)

What happens when a load reads 14-bit 
virtual address 0x026A?

CLICK (for TLB, page, cache):

A.  miss B.  hit
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