
CS 4400

Computer Systems

LECTURE 18

Virtual memory

Main memory as a cache

Address translation

Virtual Memory

CS 4400—Lecture 18 2

● Virtual memory (VM) is an abstraction of main memory.

● VM treats main memory (MM) as a cache for disk.
● transfers data back and forth between disk and MM, as needed

● VM simplifies memory management.
● provides each process with a uniform address space

● VM protects the address space of each process.
● prevents some process from inadvertently writing to the memory used

by another process

● VM works silently and automatically without any

intervention from the application programmer.

Why Care About VM

CS 4400—Lecture 18 3

● VM pervades all levels of computer systems.
● hardware exceptions, linkers, loaders, processes, ...

● VM gives applications powerful capabilities.
● create/destroy chunks of memory, map chunks of memory to

portions of disk, share memory with other processes

● VM, used improperly, can lead to difficult bugs.
● any variable reference, pointer dereference, or malloc call

uses VM

● possible behaviors: “Segmentation fault”; long, silent run

before crashing; run to completion with incorrect results

Physical Addressing

CS 4400—Lecture 18 4

● MM is an array of M contiguous byte-sized cells.
● each byte has a unique physical address (PA)

● Physical addressing is using the PA to access memory.
● used by early PCs, embedded microcontrollers, and others

● When the CPU executes a load instruction, it generates

a PA x and passes x to main memory (via memory bus).

● Main memory fetches the word starting at PA x and

returns it to the CPU.
● which then stores the data word in a register

Virtual Addressing

CS 4400—Lecture 18 5

● Another form of addressing uses a virtual address (VA).

● Virtual addressing is using the VA to access memory.
● used by modern processors for general-purpose computing

● CPU generates a VA y, which is converted to the

appropriate PA before being passed to main memory.

● The translation of VA to PA requires close cooperation

between the CPU hardware and the OS.
● memory management unit (MMU)—dedicated CPU hardware

for translating VAs, using look-up table stored in memory

Address Space

CS 4400—Lecture 18 6

● Address space—ordered set of integer addresses (> 0).
● if addresses are consecutive, the address space is linear

● Virtual address space—N = 2n virtual addresses.
● n is the number of bits needed to represent the largest address

● typically, modern virtual address spaces are 32-bit or 64-bit

● Physical address space—corresponds to the M = 2m bytes

of physical memory in the system.

● Data objects are distinguished from their addresses.
● each byte of main memory has a VA and a PA

cached
uncached

Main Memory as a Cache

CS 4400—Lecture 18

● Think of virtual memory as an array of N contiguous

byte-sized cells stored on disk.
● each byte has a unique VA that is an index into the array

● Data on disk is partitioned into blocks (called pages) that

serve as the

transfer units.

● page size P=2p

● How many VPs?

PPs?

unallocated
cached

uncached
unallocated

cached

uncached

empty

empty

empty

0

N-1

0

M-1

PP 0

PP 1

VP 0

VP 1

virtual pages (VPs)
stored on disk

physical pages (PPs)
cached in DRAM

DRAM Cache Organization

CS 4400—Lecture 18 8

● Misses in DRAM caches are much more expensive than

those in SRAM caches.
● DRAM is ~10 times slower than SRAM

● disk is ~100K times slower than DRAM

● cost of reading the first byte from a disk sector is ~100K times

slower than reading successive bytes in the sector

● The organization of DRAM caches is driven by

the large miss penalty
● DRAM caches are fully associative

and the expense of accessing the first disk sector byte
● virtual pages are large (4-8 KB)

Page Table

CS 4400—Lecture 18 9

● If a VP is cached in DRAM, which physical page is it

cached in?

● If there is a miss, where is the virtual page stored on

disk? Which page in physical memory is the victim?

● The page table, a data structure stored in physical

memory, maps virtual addresses to physical addresses.

● Address translation hardware reads the page table.

● The OS maintains the contents of the page table and

transfers pages between disk and DRAM.

Page Table Entries

CS 4400—Lecture 18 10

● A page table is array of page table entries (PTEs).

● Each VP in the virtual address space has a PTE at a fixed

offset in the page table.

● Assume that each PTE consists of a valid bit and a k-bit

address field.
● valid bit indicates if the VP is currently cached in DRAM

● if valid bit = 1, the address field indicates the start of the

corresponding PP in DRAM

● if valid bit = 0, a null address indicates an unallocated VP and a non-

null address points to the start of the VP on disk

Example: Page Table

CS 4400—Lecture 18 11

null

null

VP 1
VP 2
VP 7
VP 4

PP 0

PP 3

0

memory-resident (DRAM)
page table

physical memory (DRAM)

1

0

0

0

1

1

1

valid bit
PP # or

disk address

PTE 0

PTE 7

VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

virtual memory (disk)

n = 16, #PTEs = 8, page size = ?

Page Hit

CS 4400—Lecture 18 12

● When the CPU reads a word of virtual memory contained

in VP 2 (cached in DRAM), a page hit occurs.

● The memory management unit (MMU) is dedicated

hardware on the CPU chip that uses the virtual address to

locate PTE 2 and read it from memory.

● Because the valid bit of PTE 2 is set, the MMU knows

that VP 2 is cached.

● Then the MMU gets the starting address of the cached

page in PP 0 from the address field of PTE 2.

Page Fault

CS 4400—Lecture 18 13

● Page fault—a DRAM cache miss.

● When the CPU reads a word of virtual memory contained

in VP 3 (uncached), a page fault occurs.

● MMU reads PTE 3 from memory (valid bit indicates that

VP 3 is uncached) and triggers a page fault exception.

● The page fault exception handler (in the kernel) selects a

victim page (say, VP 4 in PP 3).

● The kernel modifies PTE 4 and PTE 3. How?

● At handler return, faulting instruction restarts—page hit.

Example: Page Fault

CS 4400—Lecture 18 14

null

null

VP 1
VP 2
VP 7
VP 3

PP 0

PP 3

0

memory-resident (DRAM)
page table

physical memory (DRAM)

1

1

0

0

1

0

1

valid bit
PP # or

disk address

PTE 0

PTE 7

VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

virtual memory (disk)

Read of VP 3 caused page fault.
VP 3 replaced VP 4 in DRAM (PP 3).

Memory Management

CS 4400—Lecture 18 15

VP 1
VP 2

0

N-1

Virtual address spaces

Process i

VP 1
VP 2

0

N-1

Process j

0

M-1

Physical memory

Shared page

The OS provides a separate page table, and thus a separate

virtual address space, for each process.

VM Simplifies . . .

CS 4400—Lecture 18 16

● Linking—each process uses the same basic format for its

memory image, regardless of where code and data

actually reside in physical memory (allows uniformity).
● .text always starts at virtual address 0x08048000

● Sharing—provides a consistent mechanism for processes

to share code and/or data.
● mapping appropriate VPs in different processes to the same PP

● Memory allocation—simple mechanism for allocating

additional memory to user processes (heap space).
● allocate k contiguous VPs, no need for PPs to be contiguous

Memory Protection

CS 4400—Lecture 18 17

● The OS must control access to the memory system.

● A user process should be prevented from
● modifying its read-only text section

● reading or modifying any code/data in the kernel

● reading or modifying the private memory of other processes

● modifying any VPs shared with other processes (unless all parties

explicitly allow it)

● This can be accomplished by adding permission bits to

the PTE the indicate a process's read/modify access.
● if an instruction violates these permissions, CPU triggers a general

protection fault (typically “segmentation fault”)

p

p

Address Translation

CS 4400—Lecture 18 18

physical page number (PPN)

Page
Table

physical page offset (PPO)
0m-1

valid

physical page number (PPN)
p-1

PHYSICAL ADDRESS

virtual page offset (VPO)
0n-1

virtual page number (VPN)
p-1

VIRTUAL ADDRESS

page table
base register

if valid=0, page is not in
memory—page fault

Page Hit Actions

CS 4400—Lecture 18 19

1. The processor generates a virtual address and sends it to

 the memory management unit (MMU).

2. The MMU generates the page table entry (PTE) address

 and requests it from the cache/main memory.

3. The cache/main memory returns the PTE to the MMU.

4. The MMU constructs the physical address and sends it

 to the cache/main memory.

5. The cache/main memory returns the requested data

 word to the processor.

Page Fault Actions

CS 4400—Lecture 18 20

1-3. Same as for a page hit. (PTE returned to MMU)

4. (PTE valid=0) The MMU triggers a page fault

 exception, transferring control to fault handler in OS.

5. The fault handler identifies a victim page in physical

 memory (pages out to disk if needs write-back).

6. The fault handler pages in the new page and updates the

 PTE in memory.

7. The fault handler returns to original process, restarting

 the faulting instruction—CPU resends VA, page hit.

Exercise: Page Sizes

CS 4400—Lecture 18 21

Suppose 32-bit virtual addresses, 24-bit physical addresses.

● page size P = 1 KB
● 232 / 210 = 222, 22 virtual page number (VPN) bits

● 10 virtual page offset (VPO) bits

● 224 / 210 = 214, 14 physical page number (PPN) bits

● 10 virtual page offset (PPO) bits

● What page size P will give 20 VPN bits and 12 PPN bits?

 CLICK:
A. 2 KB C. 8 KB

B. 4 KB D. none of the above

p

Translation Lookaside Buffer
● For every virtual address generated, the MMU must refer

to a PTE to get the corresponding physical address.

● If the PTE is cached in L1, this costs a few cycles. If not,

it costs tens to hundreds of cycles (L2 or main memory).

● A translation lookaside buffer (TLB), small cache of

PTEs in the MMU, can eliminate this cost.

● TLB is virtually addressed and each block holds a PTE.
● typically has a high degree of associativity, T=2t sets

PPO
0n-1

TLB tag
p-1

TLB index
p+t-1p+t

VPN

TLB Hit Actions

CS 4400—Lecture 18 23

1. CPU generates virtual address.

2. The MMU looks up the appropriate PTE in the TLB,

 using the VPN bits.

3. (TLB hit) The MMU fetches the PTE from the TLB.

4. The MMU constructs the physical address and sends it

 to the cache/main memory.

5. The cache/main memory returns the requested data

 word to the processor.

TLB Miss Actions

CS 4400—Lecture 18 24

1-2. Same as for a TLB hit. (TLB look-up)

3. (TLB miss) MMU generates the PTE address and

 requests it from the cache/main memory.

4. The TLB is updated with this PTE, evicting another

 PTE from the TLB.

5. The MMU constructs the physical address and sends it

 to the cache/main memory.

6. The cache/main memory returns the requested data

 word to the processor.

Exercise: Address Translation

CS 4400—Lecture 18 25

Assume: memory accesses to are to 1-byte words
n = 14 (virtual), m = 12 (physical), P = 64 (page size)
TLB is 4-way set associative with 16 total entries

● Number of VPs?

PPs?

PTEs?

● Which virtual address bits 13-0 are the VPN?

the VPO?

● Which physical address bits 11-0 are the PPN?

the PPO?

● Which bits of the VPN are the TLB set index?

the TLB tag?

Exercise: Address Translation

set tag PPN valid

0 03 -- 0
1 03 2D 1
2 02 -- 0
3 07 -- 0

tag PPN valid

09 0D 1
02 -- 0
08 -- 0
03 0D 1

tag PPN valid

00 -- 0
04 -- 0
06 -- 0
0A 34 1

tag PPN valid

07 02 1
0A -- 0
03 -- 0
02 -- 0

TLB: 4-way, 16 entries, 4 sets

VPN PPN valid

00 28 1
01 -- 0
02 33 1
03 02 1
04 -- 0
05 16 1
06 -- 0
07 -- 0

VPN PPN valid

08 13 1
09 17 1
0A 09 1
0B -- 0
0C -- 0
0D 2D 1
0E 11 1
0F 0D 1

Page Table (first 16 entries)
● What happens when a load reads

 the byte at VA 0x03d4?

● What is the VPN?

 the VPO?

● Does the TLB have a cached

 copy of the PTE?

● What is the PPN?

 the PPO?

Exercise: Address Translation

CS 4400—Lecture 18 27

set tag valid blk0 blk1 blk2 blk3

0 19 1 99 11 23 11
1 15 0 -- -- -- --
2 1B 1 00 02 04 08
3 36 0 -- -- -- --
4 32 1 43 6D 8F 09
5 0D 1 36 72 F0 1D
6 31 0 -- -- -- --
7 16 1 11 C2 DF 03
8 24 1 3A 00 51 89
9 2D 0 -- -- -- --
10 2D 1 93 15 DA 3B
11 0B 0 -- -- -- --
12 12 0 -- -- -- --
13 16 1 04 96 34 15
14 13 1 83 77 1B D3
15 14 0 -- -- -- --

L1 cache: DM, 4-byte block, 16 sets

● PPN 0x0D and PPO 0x14 form

 12-bit physical address 0x354.

● Which bits of the PA are the

 cache block offset?

 the cache set index?

 the cache tag?

● L1 cache hit or miss?

set tag valid blk0 blk1 blk2 blk3

0 19 1 99 11 23 11
1 15 0 -- -- -- --
2 1B 1 00 02 04 08
3 36 0 -- -- -- --
4 32 1 43 6D 8F 09
5 0D 1 36 72 F0 1D
6 31 0 -- -- -- --
7 16 1 11 C2 DF 03
8 24 1 3A 00 51 89
9 2D 0 -- -- -- --
10 2D 1 93 15 DA 3B
11 0B 0 -- -- -- --
12 12 0 -- -- -- --
13 16 1 04 96 34 15
14 13 1 83 77 1B D3
15 14 0 -- -- -- --

L1 cache: DM, 4-byte block, 16 sets

set tag PPN valid

0 03 -- 0
1 03 2D 1
2 02 -- 0
3 07 -- 0

tag PPN valid

09 0D 1
02 -- 0
08 -- 0
03 0D 1

tag PPN valid

00 -- 0
04 -- 0
06 -- 0
0A 34 1

tag PPN valid

07 02 1
0A -- 0
03 -- 0
02 -- 0

TLB: 4-way, 16 entries, 4 sets

VPN PPN valid

00 28 1
01 -- 0
02 33 1
03 02 1
04 -- 0
05 16 1
06 -- 0
07 -- 0

VPN PPN valid

08 13 1
09 17 1
0A 09 1
0B -- 0
0C -- 0
0D 2D 1
0E 11 1
0F 0D 1

Page Table (first 16 entries)

What happens when a load reads 14-bit
virtual address 0x026A?

CLICK (for TLB, page, cache):

A. miss B. hit

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

