
CS 4400

Computer Systems

LECTURE 17

More on process control

Signals

Nonlocal jumps

Clicker Question – Review fork()

CS 4400—Lecture 17 2

#include “csapp.h”

int doit() {
 if(Fork() == 0) {
 Fork();
 printf(“hello\n”);

 if(Fork() != 0)
 exit(0);
 }
 return;
}

int main() {
 doit();
 printf(“hello\n”);
 exit(0);
}

How many “hello”
output lines does this
program print?

CLICK your one-digit
answer.

Reaping Child Processes

CS 4400—Lecture 17 3

● When a process terminates, the kernel does not remove it

from the system immediately.

● The process is retained in a terminated state until it is

reaped by its parent.
● a terminated process not yet reaped is called a zombie

● If the parent terminates without reaping its children, the

kernel arranges for the init process to reap them.
● init has PID 1 and is created during system initialization

● long running programs (i.e., shells) should always reap their zombie

children because they consume system memory

waitpid Function

CS 4400—Lecture 17 4

● A process waits for its children to terminate by calling

pid_t waitpid(pit_t pid, int* status, int options);

● By default, waitpid suspends execution of the calling

process until a child process in its wait set terminates.
● if a process in the wait set has already terminated, waitpid returns

immediately

● returns the PID of the terminated child causing waitpid to return

● terminated child is then removed from the system

determines members of the wait set

encodes info about child

modifies default behavior

Determining the Wait Set

CS 4400—Lecture 17 5

● If pid > 0, then the wait set is the singleton child process

whose PID is equal to pid. If pid = -1, then the wait

set consists of all of the parent's child processes.

● Standard macros interpret the value of status.
● WIFEXITED(status) is true if child terminated normally

● WIFEXITSTATUS(status) returns exit status of child

● see text for more macros

● If there are no children, waitpid returns -1 and errno

set to ECHILD.
● also returns -1 if interrupted by a signal (errno set to EINTR)

Example: waitpid
/* waitpid1.c */

#include "csapp.h"
#define N 2

int main() {
 int status, i;
 pid_t pid;

 for(i = 0; i < N; i++)
 if((pid = Fork()) == 0) /* child */
 exit(100+i);

 /* parent waits for all of its children to terminate */
 while((pid = waitpid(-1, &status, 0)) > 0) {

 if(WIFEXITED(status))
 printf("child %d terminated normally with exit status=%d\n",

 pid, WEXITSTATUS(status));
 else

 printf("child %d terminated abnormally\n", pid);
 }
 if(errno != ECHILD)
 unix_error("waitpid error");

 exit(0);
}

unix> ./waitpid1
child 22966 terminated normally with exit status=100
child 22967 terminated normally with exit status=101

Will the children always be reaped “in order”?

Clicker Question
#include "csapp.h"

int main() {
 int status;
 pid_t pid;

 printf("Hello\n");
 pid = Fork();
 printf("%d\n", !pid);
 if(pid != 0)
 if(waitpid(-1, &status, 0) > 0)
 if(WIFEXITED(status) != 0)
 printf("%d\n", WEXITSTATUS(status));

 printf("Bye\n");
 exit(2);
}

How many output lines does this program generate?

CLICK your one-digit answer.
CS 4400—Lecture 17 7

Clicker Question
#include "csapp.h"

/* Wait() = Waitpid() with pid and options set to
 defaults; it blocks until any child terminates. */

int main() {
 if(Fork() == 0) {
 if(Fork() == 0)
 printf("a");
 else {
 pid_t pid; int status;
 if((pid = Wait(&status)) > 0)
 printf("b");
 }
 }
 else {
 printf("c");
 exit(0);
 }
 printf("d");
 return 0;
}

 Is the output possible?

CLICK: 1-yes, 2-no

acdbd

adbdc

abddc

cadbd

bdadc

sleep and pause

CS 4400—Lecture 17 9

● sleep suspends a process for some period of time.

unsigned int sleep(unsigned int secs);

● returns 0 if the requested amount of time has already elapsed

● otherwise, returns number of seconds left to sleep (will happen

if it was interrupted by a signal)

Don't try to use this function to ensure that one thing happens before another

● pause puts calling function to sleep until a signal is

received by the process.

int pause(void);

Don't use this function in a real program; use sigsuspend

execve Function

CS 4400—Lecture 17 10

● Loads and runs a new program in the context of the

current process.

int execve(char* filename, char* argv[], char* envp);

● execve returns to calling program only if there's an error.
● called once, never returns

● argv and envp each point to a NULL-terminated array

of pointers to strings.
● by convention, argv[0] = name of the executable object file

● each environment variable string has form “NAME=VALUE”

executable object file

argument list

environment variable list

Example: argv and envp
/* myecho.c */

#include "csapp.h"

int main(int argc, char* argv[], char* envp[]) {
 int i;

 printf(“Command line arguments:\n”);
 for(i = 0; i < argc; i++)
 printf(“\t argv[%2d]: %s\n”, i, argv[i]);

 printf(“Environment variables:\n”);
 for(i = 0; envp[i] != NULL; i++)
 printf(“\t envp[%2d]: %s\n”, i, envp[i]);

 exit(0);
}

lab1> ./myecho arg1
Command line arguments:
 argv[0]: ./myecho
 argv[1]: arg1
Environment variables:
 envp[0]: USER=eparker
 envp[1]: LOGNAME=eparker
 ...
 envp[15]: PWD=/home/eparker/CS4400/code
 envp[16]: GROUP=csprof
 ...

(See text for functions
that manipulate envp.)

CS 4400—Lecture 17

Programs vs. Processes

CS 4400—Lecture 17 12

● Program—collection of code and data

● Process—a specific instance of a program in execution

● fork runs the same program in a new child process that

is a duplicate of the parent process.

● execve loads and runs a new program in context of the

current process and does not create a new process.
● new program has same PID

● inherits all of the file descriptors that were open at the time of

the call to execve

Shells

CS 4400—Lecture 17 13

● Unix shells make heavy use of fork and execve, to

perform a sequence of read/evaluate steps.

● Read step—read a command line from the user.

● Evaluate step—parse the command line and run

programs on the behalf of the user.

● Simple shell example:
int main() {
 char cmdline[MAXLINE];

 while(1) {
 printf(“> “);
 Fgets(cmdline, MAXLINE, stdin);
 if(feof(stdin))
 exit(0);

 eval(cmdline);
 }
}

int parseline(char* buf, char** argv);
int builtin_command(char** argv);

void eval(char *cmdline) { /* evaluate a command line */
 char *argv[MAXARGS]; /* argv for execve() */
 char buf[MAXLINE]; /* holds modified command line */
 int bg; /* should the job run in bg or fg? */
 pid_t pid; /* process id */

 strcpy(buf, cmdline);
 bg = parseline(buf, argv); /* true if last argv is & */
 if(argv[0] == NULL) return; /* ignore empty lines */

 if(!builtin_command(argv)) {
 if((pid = Fork()) == 0) /* child runs user job */
 if(execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }

 /* parent waits for foreground job to terminate */
 if(!bg) {
 int status;
 if(waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }
 else
 printf("%d %s", pid, cmdline);
 }
 return;
} /* shell is flawed because children not reaped */

Signals

CS 4400—Lecture 17 15

● Signal—a message that notifies a process that an event of

some type has occurred in the system.
● allows processes to interrupt other processes

● Transfer of a signal to a destination process:

1. Kernel sends a signal to a destination process by updating some

 state in the context of the destination process.

2. A destination process receives a signal when it is forced by the

 kernel to react (ignore signal, terminate, or catch signal) to the

 delivery of the signal.

● (See text for a list of Linux signals.)

Pending Signals

CS 4400—Lecture 17 16

● Pending signal—sent but not yet received.

● At any point, there can be at most one pending signal of a

particular type.

● If a process p has a pending signal of type k, any

subsequent signals of type k sent to p are discarded.

● A process can selectively block receipt of certain signals

(signal is delivered, but not received until unblocked).

● A pending signal is received at most once.

● Kernel keeps track of pending and blocked signals.

Process Groups

CS 4400—Lecture 17 17

● Every process belongs to exactly one process group.
● a process group is identified by a process group ID > 0

● pid_t getpgrp(void) returns process group ID of current process

● By default, a child process belongs to the process group

of its parent.

● setpgid changes the process group of pid to pgid.

pid_t setpgid(pid_t pid, pid_t pgid);

● if pid=0, PID of current process is used

● if pgid=0, PID of process specified by pid is used for group id

● what does setpgid(0, 0) do?

Sending Signals
kill sends signal number sig to other process(es).

int kill(pid_t pid, int sig);

● if pid > 0, sends to process pid

● if pid < 0, sends to every process in process group abs(pid)

#include "csapp.h"

int main() {
 pid_t pid;

 /* child sleeps until SIGKILL signal received
 then dies */
 if((pid = Fork()) == 0) {
 Pause(); /* wait for signal */
 printf(“control never reaches here”);
 exit(0);
 }

 /* parent sends SIGKILL signal to child */
 Kill(pid, SIGKILL);
 exit(0);
}

Receiving Signals

CS 4400—Lecture 17 19

● When the kernel is ready to pass control to process p, it

checks the set of pending, unblocked signals.
● if the set is empty, continue with I

next
 in p

● otherwise, choose some signal number k (usually the smallest) from

the set and force p to receive the signal

● The process completes some action in response and then

control passes to I
next

.

● Each signal has a default action (see text). Process either

terminates, terminates and dumps core, stops until

restarted by SIGCONT signal, or ignores signal.

Modifying Default Action
signal modifies the default action for a signal.

handler_t* signal(int signum, handler_t* handler);

● handler is the address of a user-defined function

● (see text for more options)

● default actions of SIGSTOP and SIGKILL cannot be changed

#include "csapp.h"

void handler(int sig) /* SIGINT handler */
 printf(“Caught SIGINT\n”);
 exit(0);
}

int main() {
 /* Install SIGINT handler */
 if(signal(SIGINT, handler) == SIG_ERR)
 unix_error(“signal error”);

 pause(); /* Wait for ctrl-c from keyboard */

 exit(0);
}

Explicitly Blocking Signals

CS 4400—Lecture 17 21

● sigprocmask explicitly blocks selected signals.
int sigprocmask(int how, sigset_t* set, sigset_t* oldset);

● The set of blocked signals is maintained as a bit vector

blocked.

● Behavior depends on argument how.
● SIG_BLOCK—adds signals in set to blocked

 (blocked |= set)

● SIG_UNBLOCK—removes signals in set from blocked

(blocked &= ~set)

● SIG_SETMASK—blocked = set

void handler(int sig) {
 pid_t pid;
 while((pid = waitpid(-1, NULL, 0)) > 0) /* Reap a zombie child */
 deletejob(pid); /* Delete the child from the job list */
 if(errno != ECHILD)
 unix_error("waitpid error");
}

int main(int argc, char** argv) {
 int pid;
 sigset_t mask;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize job list (to keep track of children) */

 while(1) {
 Sigemptyset(&mask);
 Sigaddset(&mask, SIGCHLD);
 Sigprocmask(SIG_BLOCK, &mask, NULL); /* Block SIGCHLD */

 /* Child process */
 if((pid = Fork()) == 0) {
 Sigprocmask(SIG_UNBLOCK, &mask, NULL); /* Unblock SIGCHLD */
 Execve("/bin/ls", argv, NULL);
 }

 /* Parent process */
 addjob(pid); /* Add the child to the job list */
 Sigprocmask(SIG_UNBLOCK, &mask, NULL); /* Unblock SIGCHLD */
 }
 exit(0);
}

Nonlocal Jumps

CS 4400—Lecture 17 23

● Transfer control from one function to another currently

executing function, without having to go through the

normal call-and-return sequence.

● setjmp saves the current stack context in env.
int setjmp(jmp_buf env);

● longjmp restores the stack context from the env buffer

and then triggers a return from the most recent setjmp

call that initialized env.
int longjmp(jmp_buf env, int retval);

● setjmp then returns with return value retval

Nonlocal Jumps

CS 4400—Lecture 17 24

● setjmp is called once and returns multiple times.
● once when it is first called and stack context is saved

● once for each corresponding call to longjmp

● longjmp is called once and never returns.

● Nonlocal jumps permit
● immediate return from a deeply-nested function call, usually as a

result of detecting some error (return directly to an error handler,

rather than unwinding the call stack)

● branching out of a signal handler to a specific code location, rather

than returning to the instruction that was interrupted at the arrival of

the signal

jmp_buf buf;

int error1 = 0;
int error2 = 1;

void foo(void), bar(void);

int main() {
 int rc;

 rc = setjmp(buf); /* returns 0 when called directly */
 if(rc == 0) /* returns !=0 when called indirectly */
 foo();
 else if(rc == 1)
 printf("Detected an error1 condition in foo\n");
 else if(rc == 2)
 printf("Detected an error2 condition in foo\n");
 else
 printf("Unknown error condition in foo\n");
 exit(0);
}

void foo(void) { /* deeply nested function foo */
 if(error1)
 longjmp(buf, 1);
 bar();
}

void bar(void) {
 if(error2)
 longjmp(buf, 2);
}

/* restart.c */

sigjmp_buf buf;

void handler(int sig) {
 siglongjmp(buf, 1); /* version of longjmp that can be */
} /* used by signal handlers */
 /* 1 means to restore the signal mask */
int main() {
 Signal(SIGINT, handler);

 if(!sigsetjmp(buf, 1)) /* version of setjmp for sig handlers */
 printf("starting\n"); /* 1 means to save the signal mask */
 else
 printf("restarting\n");

 while(1) {
 Sleep(1);
 printf("processing...\n");
 }
 exit(0);
}

unix> ./restart
starting
processing...
processing...
restarting user types ctrl-c
processing...
restarting user types ctrl-c
processing...

CS 4400—Lecture 17 26

Summary

CS 4400—Lecture 17 27

● ECF occurs at all levels of a computer system.

● Hardware level: interrupt, trap, fault, and abort classes

of exceptions.

● OS level: a process provides the illusion that a program

has exclusive use of the processor and memory.

● Application level: apps can create and wait for child

processes, run new programs, and catch signals from

other processes.
● C programs can use nonlocal jumps to bypass the normal call/return

stack discipline and branch directly to a function.

Notes on Lab 5 – START EARLY

CS 4400—Lecture 17 28

● The shell example (slides 13-14) is good starting point.

● Other examples from the textbook that we did not cover

will be helpful.
● HINT: Read every word of Chapter 8.

● Be sure to look at specifics: signal types, function

options and statuses, error codes, ...

● 5 of 90 points for checking system call return values and

5 of 90 points for good comments (unlike previous labs).

● Output of your shell and reference shell must match!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

