CS 4400

Computer Systems

LECTURE 17

More on process control
Signals

Nonlocal jumps



Clicker Question — Review f or k()

#i ncl ude “csapp. h”

int doit() { How many “hello”

T (Fork() == 0) { output lines does this
For k() ; . o
printf(“hello\n”); program print:

i f (Fork() !'= 0) CLICK your one-digit

\ exit(0); answer.

return;

}

Int main() {
doit();
printf(“hello\n”);
exit(0);

}
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Reaping Child Processes

 When a process terminates, the kernel does not remove it

from the system immediately.

e The process 1s retained in a terminated state until 1t 1s

reaped by 1its parent.

 a terminated process not yet reaped is called a zombie

e If the parent terminates without reaping its children, the

kernel arranges for the i ni t process to reap them.
e i ni t has PID 1 and is created during system initialization
* long running programs (1.e., shells) should always reap their zombie

children because they consume system memory
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wal t pi d Function

e A process waits for its children to terminate by calling

encodes info about child

determines members of the wait set modifies default behavior

| | |
pidt waitpid(pit t pid, int* status, int options);

* By default, wai t pi d suspends execution of the calling

process until a child process 1n its wait set terminates.
« if a process in the wait set has already terminated, wai t pi d returns
immediately
o returns the PID of the terminated child causing wai t pi d to return

e terminated child is then removed from the system
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Determining the Wait Set

e If pi d > 0, then the wait set 1s the singleton child process
whose PID 1s equal to pi d. If pi d =- 1, then the wait
set consists of all of the parent's child processes.

e Standard macros interpret the value of st at us.

« W FEXI TED( st at us) is true if child terminated normally
« W FEXI TSTATUS( st at us) returns exit status of child

e see text for more macros

e Ifthere are no children, wai t pi d returns -1 and err no

set to ECHI LD.

e also returns -1 if interrupted by a signal (er r no set to El NTR)
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Example: wal t pi d

[* waitpidl.c */

#i ncl ude "csapp. h" Will the children always be reaped “in order”?
#define N 2

int main() { uni x> ./ waitpidl

I nt st at us, |
pid t pid;

child 22966 termnated normally with exit status=100
child 22967 termnated nornmally with exit status=101

for(i =0; 1 <N 1++)
|f((p id = Fork()) ==0) [* child */
Xit(100+1);

/* parent waits for all of its children to termnate */
while((pid = waitpid(-1, &tatus, 0)) > 0) {
| f (W FEXI TED( st at us))
printf("child %dd termnated normally with exit status=%\n",
pi d, VEXI TSTATUS( st at us) ) ;
el se
printf("child %d term nated abnornmal |l y\n", pid);

| f(errno !'= ECHI LD)
uni x_error("waitpid error");

exit(0);




Clicker Question

#i ncl ude "csapp. h"
Int main() {

| nt st at us;

pid t pid;
f(" HeIIo\n)

%@\ n", l pi d);
0)

pid(-1, &status, 0) > 0)
W FEXI TED( st atus) != 0)
ntf("%l\n", WEXI TSTATUS(st atus));

prin
exit

f Bye\n ) ;
2

7~ —+

}

How many output lines does this program generate?

CLICK your one-digit answer.
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Clicker Question

#i ncl ude "csapp. h"

[* Wait() = Waitpid() wth pid and options set to
defaults; it blocks until any child term nates. */

Int main() {
| f(Fork() == 0) {
| f (Fork() == 0)

printf("a");
else {
idt pid; int status; -
Pf ((pi g = Vit (&status)) > 0) Is the output possible?
\ printf("b"); CLICK: 1-yes, 2-no
acdbd
el se {
printf("c"); adbdc
, SR abddc
rintf("d");
rpet urn(O; ) cadbd
} bdadc




sl eep and pause

e sl eep suspends a process for some period of time.
unsi gned I nt sleep(unsigned int secs);

 returns 0 1f the requested amount of time has already elapsed

 otherwise, returns number of seconds left to sleep (will happen

if 1t was interrupted by a signal)

Don't try to use this function to ensure that one thing happens before another

e pause puts calling function to sleep until a signal 1s

received by the process.
| nt pause(void);

Don't use this function in a real program; use Si gsuspend
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execve Function

e Loads and runs a new program in the context of the

current process. argument list

executable object file ‘ environment variable list
| nt execve(char* filenanme, char* argv[], char* envp);
e execve returns to calling program only if there's an error.

 called once, never returns

e ar gv and envp each point to a NULL-terminated array

of pointers to strings.
* by convention, ar gv[ 0] = name of the executable object file
 cach environment variable string has form “ NAME=VALUE"
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Example: ar gv and envp

/* nyecho.c */

#i ncl ude "csapp. h"

int main(int argc, char* argv[], char* envp[]) {

int i;

printf(“Command |ine argunents:\n”);
for(i = 0; i < argc; i++)
printf(“\t argv[%d]: %\n”, i, argv[i]);

printf(“Environment variables:\n");
for(i = 0; envp[i]
printf(“\t envp[%d]: %\n”, i, envp[i]);

exit(0);

= NULL; i++)

(See text for functions
that manipulate envp.)
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| abl> ./ nmyecho argl
Command | i ne argunents:
argv[ O0]: ./nyecho
argv[ 1]: argl
Envi ronnent vari abl es:
envp[ 0]: USER=epar ker
envp[ 1]: LOGNAME=epar ker

éth[lS]: PWD=/ hone/ epar ker / C54400/ code
envp[ 16] : GROUP=cspr of




Programs vs. Processes
* Program—collection of code and data

e Process—a specific instance of a program 1n execution

e for Kk runs the same program in a new child process that

is a duplicate of the parent process.

e execve loads and runs a new program in context of the

current process and does not create a new process.

e new program has same PID

e inherits all of the file descriptors that were open at the time of

the call to execve
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Shells

Unix shells make heavy use of f or k and execve, to

perform a sequence of read/evaluate steps.
Read step—read a command line from the user.

Evaluate step—parse the command line and run

programs on the behalf of the user.

. int main() {
Simple shell example: char cmdl i ne[ MAXLI NE] ;

while(l) {
printf(“> “);
Fgets(cndl i ne, MAXLINE, stdin);
| f(feof (stdin))
exit(0);

eval (cndl i ne);

}
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I nt parseline(char* buf, char** argv);
int builtin_conmand(char** argv);

voi d eval (char *cndline) { /* evaluate a command |ine */
char *argv[ MAXARGS]; /* argv for execve() */
char buf [ MAXLI NE] ; /* holds nodified command |ine */
I nt bg; /* should the job run in bg or fg? */
pid t pid; /* process id */

strcpy(buf, cndline);
bg = parseline(buf, argv); /[/* true if last argv is & */
| f (argv[ 0] == NULL) return; /[* ignore enpty |lines */

I f(!builtin_comuand(argv))
1 f((pid = Fork()) == 0) /[* child runs user job */
| f (execve(argv[O0], argv, environ) < 0)
printf("%: Command not found.\n", argv[O0]);
exit(0);

/* parent waits for foreground job to termnate */
1T (1bg) {

I nt st at us;

| f(waitpid(pid, &status, 0) < 0)

uni x_error("waitfg: waitpid error");

}
el se

printf("% %", pid, cndline);

return;
} /* shell is flawed because children not reaped */




Signals

e Signal—a message that notifies a process that an event of

some type has occurred 1n the system.

e allows processes to interrupt other processes

* Transfer of a signal to a destination process:
1. Kernel sends a signal to a destination process by updating some
state in the context of the destination process.
2. A destination process receives a signal when it 1s forced by the
kernel to react (ignore signal, terminate, or catch signal) to the

delivery of the signal.

* (See text for a list of Linux signals.)
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Pending Signals
Pending signal—sent but not yet received.

At any point, there can be at most one pending signal of a

particular type.

If a process p has a pending signal of type £, any

subsequent signals of type k sent to p are discarded.

A process can selectively block receipt of certain signals

(signal 1s delivered, but not received until unblocked).
A pending signal is received at most once.

Kernel keeps track of pending and blocked signals.
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Process Groups

e Every process belongs to exactly one process group.
 a process group is identified by a process group ID >0

e pid t getpgrp(voil d) returns process group ID of current process

e By default, a child process belongs to the process group

of 1ts parent.

e set pgi d changes the process group of pi d to pgi d.
pidt setpgid(pidt pid, pidt pgid);
o if pi d=0, PID of current process is used
 if pgi d=0, PID of process specified by pi d is used for group id
e what does set pgi d(0, 0) do?
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Sending Signals
ki I'l sends signal number si g to other process(es).
int kill(pird t pid, int sig);
e 1f pi d > 0, sends to process pi d

e 1f pi d <0, sends to every process 1n process group abs(pi d)

#i ncl ude "csapp. h"

int main() {
pid t pid;

/[* child sleeps until SIGKILL signal received
then dies */

1 f((pid = Fork()) == 0) {
Pause(); /* wait for signal */
printf(“control never reaches here”);
exit(0);

/* parent sends SIGKILL signal to child */
Kill(pid, SIGKILL);
exit(0);




Recelving Signals
 When the kernel 1s ready to pass control to process p, it

checks the set of pending, unblocked signals.
« if the set 1s empty, continue with / _ in p

e otherwise, choose some signal number £ (usually the smallest) from

the set and force p to receive the signal
e The process completes some action in response and then

control passes to/ .
next

e Each signal has a default action (see text). Process either
terminates, terminates and dumps core, stops until

restarted by SI GCONT signal, or ignores signal.
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Modifying Default Action

si gnal modifies the default action for a signal.
handl er t* signal (int signum handler t* handler);
* handl er is the address of a user-defined function

* (see text for more options)
e default actions of SI GSTOP and SI GKI LL cannot be changed

#i ncl ude "csapp. h"

void handler(int sig) /* SIGANT handler */
printf(“Caught SIG NT\n");
exit(0);

Int main() {
[* Install SI A NT handler */
| f (signal (SIA NT, handler) == SI G ERR)
uni x_error(“signal error”);

pause(); [/* Wait for ctrl-c fromkeyboard */
exit(0);




Explicitly Blocking Signals

e si gpr ocmask explicitly blocks selected signals.

I nt sigprocmask(int how, sigset t* set, sigset t* ol dset);

* The set of blocked signals 1s maintained as a bit vector

bl ocked.

e Behavior depends on argument how.
« SI G BLOCK—adds signals in set to bl ocked
(bl ocked | = set)
« SI G_UNBLOCK—removes signals in set from bl ocked
(bl ocked &= ~set)
« SI G SETMASK—bI ocked = set
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void handler(int sig) {
pidt pid;
while((pid = waitpid(-1, NULL, 0)) > 0) /* Reap a zonbie child */
del etejob(pid); /* Delete the child fromthe job list */
i f(errno !'= ECHI LD)
uni Xx_error("waitpid error");

}

int main(int argc, char** argv) {
I nt pid;
si gset _t nmask;

Si gnal (SI GCHLD, handl er);
initjobs(); /* Initialize job list (to keep track of children) */

whil e(1l) {
Si genpt yset ( &ask) ;
Si gaddset ( &rask, S| GCHLD) ;
Si gprocmask(SI G BLOCK, &mask, NULL); /* Bl ock SI GCHLD */

[* Child process */

1 f((pid = Fork()) == {
Si gprocmask(SI G UNBLOCK, &mask, NULL); /* Unbl ock SI GCHLD */
Execve("/bin/ls", argv, NULL);

}

/* Parent process */
addj ob(pid); /* Add the child to the job list */
Si gprocmask(SI G UNBLOCK, &mask, NULL); /* Unbl ock SI GCHLD */

I
exit(0);




Nonlocal Jumps

e Transfer control from one function to another currently
executing function, without having to go through the
normal call-and-return sequence.

e set | np saves the current stack context in env.
| nt set) np(j np_buf env);

* | ongj np restores the stack context from the env buffer
and then triggers a return from the most recent set | np

call that initialized env.
I nt | ongjnp(j np_buf env, int retval);

e set | np then returns with return value r et val
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Nonlocal Jumps

* setj np 1s called once and returns multiple times.
e once when it 1s first called and stack context 1s saved

 once for each corresponding call to | ongj np

e | ongj np 1s called once and never returns.

e Nonlocal jumps permit
« immediate return from a deeply-nested function call, usually as a
result of detecting some error (return directly to an error handler,
rather than unwinding the call stack)
 branching out of a signal handler to a specific code location, rather
than returning to the instruction that was interrupted at the arrival of

the signal
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j mp_buf buf;

int errorl
I Nt error?2

voi d foo(void),

0;
1;

int main() {

}

voi d foo(void) {

i nt rc;

rc = setjnp(buf); /*

1 f(rc == 0) [ *
foo();

else if(rc ==
printf("Detected an
else if(rc ==
printf("Detected an
el se

bar (voi d) ;

returns O when called directly */
returns !'=0 when called indirectly */

errorl condition in foo\n");

error2 condition in foo\n");

printf("Unknown error condition in foo\n");

exit(0);

| f(errorl)

| ongj mp(buf, 1);
bar () ;

voi d bar(void) {

| f(error?2)
| ongj np(buf, 2);

/* deeply nested function foo */




[* restart.c */
si gj np_buf buf;

void handler(int sig) {
si gl ongj np(buf, 1); /* version of longjnp that can be */
[ * used by signal handlers */
[ * 1 neans to restore the signal mask */
int main() {
Si gnal (SI A NT, handl er);

| f(!sigsetjnmp(buf, 1)) /* version of setjnp for sig handlers */
printf("starting\n"); /* 1 neans to save the signal mask */
el se
printf("restarting\n");

while(1l) {
Sl eep(1);
printf("processing...\n");

exi t(0); uni x> ./restart
} starting

processi ng. . .
processing. ..

restarting user types ctri-c
processi ng. ..
restarting user types ctri-c

processi ng. ..
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Summary

ECF occurs at all levels of a computer system.

Hardware level: interrupt, trap, fault, and abort classes

of exceptions.

OS level. a process provides the 1llusion that a program

has exclusive use of the processor and memory.

Application level: apps can create and wait for child
processes, run new programs, and catch signals from

other processes.
e C programs can use nonlocal jumps to bypass the normal call/return

stack discipline and branch directly to a function.
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Notes on Lab 5 — START EARLY

The shell example (slides 13-14) 1s good starting point.

Other examples from the textbook that we did not cover

will be helpful.
 HINT: Read every word of Chapter 8.

Be sure to look at specifics: signal types, function

options and statuses, error codes, ...

5 of 90 points for checking system call return values and

5 0of 90 points for good comments (unlike previous labs).

Output of your shell and reference shell must match!
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