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LECTURE 17

More on process control

Signals

Nonlocal jumps



Clicker Question – Review fork()
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#include “csapp.h”

int doit() {
  if(Fork() == 0) {
    Fork();
    printf(“hello\n”);

    if(Fork() != 0)
      exit(0);
  }
  return;
}

int main() {
  doit();
  printf(“hello\n”);
  exit(0);
}

How many “hello” 
output lines does this 
program print?

CLICK your one-digit 
answer.



Reaping Child Processes
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●  When a process terminates, the kernel does not remove it 

from the system immediately.

●  The process is retained in a terminated state until it is 

reaped by its parent.
● a terminated process not yet reaped is called a zombie

●  If the parent terminates without reaping its children, the 

kernel arranges for the init process to reap them.
● init has PID 1 and is created during system initialization

● long running programs (i.e., shells) should always reap their zombie 

children because they consume system memory



waitpid Function

CS 4400—Lecture 17      4

●  A process waits for its children to terminate by calling

pid_t waitpid(pit_t pid, int* status, int options);

●  By default, waitpid suspends execution of the calling 

process until a child process in its wait set terminates.
● if a process in the wait set has already terminated, waitpid returns 

immediately

● returns the PID of the terminated child causing waitpid to return

● terminated child is then removed from the system

determines members of the wait set

encodes info about child

modifies default behavior



Determining the Wait Set
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●  If pid > 0, then the wait set is the singleton child process 

whose PID is equal to pid.  If pid = -1, then the wait 

set consists of all of the parent's child processes.

●  Standard macros interpret the value of status.
● WIFEXITED(status) is true if child terminated normally

● WIFEXITSTATUS(status) returns exit status of child

● see text for more macros

●  If there are no children, waitpid returns -1 and errno 

set to ECHILD.  
● also returns -1 if interrupted by a signal (errno set to EINTR)



Example:  waitpid
/* waitpid1.c */

#include "csapp.h"
#define N 2

int main() {
  int status, i;
  pid_t pid;

  for(i = 0; i < N; i++) 
 if((pid = Fork()) == 0)  /* child */
   exit(100+i);

  /* parent waits for all of its children to terminate */
  while((pid = waitpid(-1, &status, 0)) > 0) {

 if(WIFEXITED(status))  
   printf("child %d terminated normally with exit status=%d\n",

       pid, WEXITSTATUS(status));
    else

   printf("child %d terminated abnormally\n", pid);
  }
  if(errno != ECHILD)
    unix_error("waitpid error");

  exit(0);
}

unix> ./waitpid1
child 22966 terminated normally with exit status=100
child 22967 terminated normally with exit status=101

Will the children always be reaped “in order”?



Clicker Question
#include "csapp.h"

int main() {
  int status;
  pid_t pid;
  
  printf("Hello\n");
  pid = Fork();
  printf("%d\n", !pid);
  if(pid != 0) 
    if(waitpid(-1, &status, 0) > 0) 
      if(WIFEXITED(status) != 0)
        printf("%d\n", WEXITSTATUS(status));

  printf("Bye\n");
  exit(2);
}

How many output lines does this program generate?

CLICK your one-digit answer.
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Clicker Question
#include "csapp.h"

/* Wait() = Waitpid() with pid and options set to     
   defaults; it blocks until any child terminates. */

int main() {
  if(Fork() == 0) {
    if(Fork() == 0) 
      printf("a");
    else {
      pid_t pid; int status;
      if((pid = Wait(&status)) > 0) 
        printf("b");
    }
  }
  else {
    printf("c");
    exit(0);
  }
  printf("d");
  return 0;
}

  Is the output possible?

CLICK: 1-yes, 2-no

acdbd

adbdc

abddc

cadbd

bdadc



sleep and pause
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●  sleep suspends a process for some period of time.

unsigned int sleep(unsigned int secs);

● returns 0 if the requested amount of time has already elapsed

● otherwise, returns number of seconds left to sleep (will happen   

if it was interrupted by a signal)

Don't try to use this function to ensure that one thing happens before another

●  pause puts calling function to sleep until a signal is 

received by the process.

int pause(void);

Don't use this function in a real program; use sigsuspend



execve Function
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●  Loads and runs a new program in the context of the 

current process.

int execve(char* filename, char* argv[], char* envp);

●  execve returns to calling program only if there's an error.
● called once, never returns

●  argv and envp each point to a NULL-terminated array 

of pointers to strings.
● by convention, argv[0] = name of the executable object file

● each environment variable string has form “NAME=VALUE”

executable object file

argument list

environment variable list



Example:  argv and envp
/* myecho.c */

#include "csapp.h"

int main(int argc, char* argv[], char* envp[]) {
  int i;

  printf(“Command line arguments:\n”);
  for(i = 0; i < argc; i++)
    printf(“\t argv[%2d]: %s\n”, i, argv[i]);

  printf(“Environment variables:\n”);
  for(i = 0; envp[i] != NULL; i++)
    printf(“\t envp[%2d]: %s\n”, i, envp[i]);

  exit(0);
}

lab1> ./myecho arg1
Command line arguments:
         argv[ 0]: ./myecho
         argv[ 1]: arg1
Environment variables:
         envp[ 0]: USER=eparker
         envp[ 1]: LOGNAME=eparker
         ...
         envp[15]: PWD=/home/eparker/CS4400/code
         envp[16]: GROUP=csprof
         ...

(See text for functions 
that manipulate envp.)

CS 4400—Lecture 17     



Programs vs. Processes
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●  Program—collection of code and data

●  Process—a specific instance of a program in execution

●  fork runs the same program in a new child process that 

is a duplicate of the parent process.

●  execve loads and runs a new program in context of the 

current process and does not create a new process.
● new program has same PID 

● inherits all of the file descriptors that were open at the time of     

the call to execve



Shells
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●  Unix shells make heavy use of fork and execve, to 

perform a sequence of read/evaluate steps.

●  Read step—read a command line from the user.

●  Evaluate step—parse the command line and run 

programs on the behalf of the user.

●  Simple shell example:  
int main() {
  char cmdline[MAXLINE];  

  while(1) {
    printf(“> “); 
    Fgets(cmdline, MAXLINE, stdin);
    if(feof(stdin))
      exit(0);

    eval(cmdline);
  }
}



int parseline(char* buf, char** argv);
int builtin_command(char** argv);

void eval(char *cmdline) {     /* evaluate a command line */
  char *argv[MAXARGS]; /* argv for execve() */
  char buf[MAXLINE];   /* holds modified command line */
  int bg;              /* should the job run in bg or fg? */
  pid_t pid;           /* process id */
    
  strcpy(buf, cmdline);
  bg = parseline(buf, argv);  /* true if last argv is & */
  if(argv[0] == NULL)  return;   /* ignore empty lines */

  if(!builtin_command(argv)) { 
    if((pid = Fork()) == 0)    /* child runs user job */
      if(execve(argv[0], argv, environ) < 0) {
        printf("%s: Command not found.\n", argv[0]);
        exit(0);
      }

    /* parent waits for foreground job to terminate */
    if(!bg) {
      int status;
      if(waitpid(pid, &status, 0) < 0)
        unix_error("waitfg: waitpid error");
    }
    else
      printf("%d %s", pid, cmdline);
  }
  return;
}          /* shell is flawed because children not reaped */



Signals
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●  Signal—a message that notifies a process that an event of 

some type has occurred in the system.
● allows processes to interrupt other processes

●  Transfer of a signal to a destination process:

1. Kernel sends a signal to a destination process by updating some 

 state in the context of the destination process.  

2. A destination process receives a signal when it is forced by the   

 kernel to react (ignore signal, terminate, or catch signal) to the   

 delivery of the signal.

●  (See text for a list of Linux signals.)



Pending Signals
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●  Pending signal—sent but not yet received.

●  At any point, there can be at most one pending signal of a 

particular type.

●  If a process p has a pending signal of type k, any 

subsequent signals of type k sent to p are discarded.

●  A process can selectively block receipt of certain signals 

(signal is delivered, but not received until unblocked).

●  A pending signal is received at most once.

●  Kernel keeps track of pending and blocked signals.



Process Groups
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●  Every process belongs to exactly one process group.
● a process group is identified by a process group ID > 0

● pid_t getpgrp(void) returns process group ID of current process

●  By default, a child process belongs to the process group 

of its parent.

●  setpgid changes the process group of pid to pgid.

pid_t setpgid(pid_t pid, pid_t pgid);

● if pid=0, PID of current process is used

● if pgid=0, PID of process specified by pid is used for group id

● what does setpgid(0, 0) do?



Sending Signals
kill sends signal number sig to other process(es).

int kill(pid_t pid, int sig);

● if pid > 0, sends to process pid

● if pid < 0, sends to every process in process group abs(pid)

#include "csapp.h"

int main() {
  pid_t pid;

  /* child sleeps until SIGKILL signal received
     then dies */
  if((pid = Fork()) == 0) {
    Pause();  /* wait for signal */
    printf(“control never reaches here”);
    exit(0);
  }

  /* parent sends SIGKILL signal to child */
  Kill(pid, SIGKILL);
  exit(0);
}



Receiving Signals
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●  When the kernel is ready to pass control to process p, it 

checks the set of pending, unblocked signals.
● if the set is empty, continue with I

next
 in p

● otherwise, choose some signal number k (usually the smallest) from 

the set and force p to receive the signal

●  The process completes some action in response and then 

control passes to I
next

.

●  Each signal has a default action (see text).  Process either 

terminates, terminates and dumps core, stops until 

restarted by SIGCONT signal, or ignores signal.



Modifying Default Action
signal modifies the default action for a signal.

handler_t* signal(int signum, handler_t* handler);

● handler is the address of a user-defined function

● (see text for more options)

● default actions of SIGSTOP and SIGKILL cannot be changed

#include "csapp.h"

void handler(int sig)  /* SIGINT handler */
  printf(“Caught SIGINT\n”);
  exit(0);
}

int main() {
  /* Install SIGINT handler */
  if(signal(SIGINT, handler) == SIG_ERR)
    unix_error(“signal error”);
  
  pause();  /* Wait for ctrl-c from keyboard */

  exit(0);
}



Explicitly Blocking Signals
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●  sigprocmask explicitly blocks selected signals.
int sigprocmask(int how, sigset_t* set, sigset_t* oldset);

●  The set of blocked signals is maintained as a bit vector 

blocked.

●  Behavior depends on argument how.
● SIG_BLOCK—adds signals in set to blocked         

 (blocked |= set)

● SIG_UNBLOCK—removes signals in set from blocked             

(blocked &= ~set)

● SIG_SETMASK—blocked = set



void handler(int sig) {
  pid_t pid;
  while((pid = waitpid(-1, NULL, 0)) > 0) /* Reap a zombie child */
    deletejob(pid); /* Delete the child from the job list */
  if(errno != ECHILD)
    unix_error("waitpid error");
}
    
int main(int argc, char** argv) {
  int pid;  
  sigset_t mask;

  Signal(SIGCHLD, handler);
  initjobs(); /* Initialize job list (to keep track of children) */

  while(1) {
    Sigemptyset(&mask);
    Sigaddset(&mask, SIGCHLD); 
    Sigprocmask(SIG_BLOCK, &mask, NULL); /* Block SIGCHLD */
    
    /* Child process */
    if((pid = Fork()) == 0) {
      Sigprocmask(SIG_UNBLOCK, &mask, NULL); /* Unblock SIGCHLD */
      Execve("/bin/ls", argv, NULL);
    }

    /* Parent process */
    addjob(pid);  /* Add the child to the job list */
    Sigprocmask(SIG_UNBLOCK, &mask, NULL);  /* Unblock SIGCHLD */
  }
  exit(0);
}



Nonlocal Jumps
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●  Transfer control from one function to another currently 

executing function, without having to go through the 

normal call-and-return sequence.

●  setjmp saves the current stack context in env.
int setjmp(jmp_buf env);

●  longjmp restores the stack context from the env buffer 

and then triggers a return from the most recent setjmp 

call that initialized env.
int longjmp(jmp_buf env, int retval);

● setjmp then returns with return value retval



Nonlocal Jumps
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●  setjmp is called once and returns multiple times.
● once when it is first called and stack context is saved

● once for each corresponding call to longjmp

●  longjmp is called once and never returns.

●  Nonlocal jumps permit 
● immediate return from a deeply-nested function call, usually as a 

result of detecting some error (return directly to an error handler, 

rather than unwinding the call stack)

● branching out of a signal handler to a specific code location, rather 

than returning to the instruction that was interrupted at the arrival of 

the signal 



jmp_buf buf;

int error1 = 0; 
int error2 = 1;

void foo(void), bar(void);

int main() {
  int rc;

  rc = setjmp(buf);  /* returns 0 when called directly */
  if(rc == 0)        /*   returns !=0 when called indirectly */
    foo();
  else if(rc == 1) 
    printf("Detected an error1 condition in foo\n");
  else if(rc == 2) 
    printf("Detected an error2 condition in foo\n");
  else 
    printf("Unknown error condition in foo\n");
  exit(0);
}

void foo(void) {    /* deeply nested function foo */
  if(error1)
    longjmp(buf, 1); 
  bar();
}

void bar(void) {
  if(error2)
    longjmp(buf, 2); 
}



/* restart.c */

sigjmp_buf buf;

void handler(int sig) {
  siglongjmp(buf, 1);   /* version of longjmp that can be */
}                       /*   used by signal handlers */
                        /*   1 means to restore the signal mask */
int main() {
  Signal(SIGINT, handler);

  if(!sigsetjmp(buf, 1))  /* version of setjmp for sig handlers */
    printf("starting\n"); /*   1 means to save the signal mask */
  else 
    printf("restarting\n");

  while(1) {
    Sleep(1);
    printf("processing...\n");
  }
  exit(0);
}

unix> ./restart
starting
processing...
processing...
restarting  user types ctrl-c 
processing...
restarting  user types ctrl-c
processing...
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Summary
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●  ECF occurs at all levels of a computer system. 

●  Hardware level:  interrupt, trap, fault, and abort classes 

of exceptions.

●  OS level:  a process provides the illusion that a program 

has exclusive use of the processor and memory.

●  Application level:  apps can create and wait for child 

processes, run new programs, and catch signals from 

other processes. 
● C programs can use nonlocal jumps to bypass the normal call/return 

stack discipline and branch directly to a function.



Notes on Lab 5 – START EARLY
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●  The shell example (slides 13-14) is good starting point.

●  Other examples from the textbook that we did not cover 

will be helpful.
●  HINT:  Read every word of Chapter 8.

●  Be sure to look at specifics:  signal types, function 

options and statuses, error codes, ...

●  5 of 90 points for checking system call return values and 

5 of 90 points for good comments (unlike previous labs).

●  Output of your shell and reference shell must match!
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