CS 4400

Computer Systems

LECTURE 17

More on process control
Signals

Nonlocal jumps

Clicker Question — Review f or k()

#i ncl ude “csapp. h”

int doit() { How many “hello”

T (Fork() == 0) { output lines does this
For k() ; . o
printf(“hello\n”); program print:

i f (Fork() !'= 0) CLICK your one-digit

\ exit(0); answer.

return;

}

Int main() {
doit();
printf(“hello\n”);
exit(0);

}

CS 4400—Lecture 17 2

Reaping Child Processes

 When a process terminates, the kernel does not remove it

from the system immediately.

e The process 1s retained in a terminated state until 1t 1s

reaped by 1its parent.

 a terminated process not yet reaped is called a zombie

e If the parent terminates without reaping its children, the

kernel arranges for the i ni t process to reap them.
e i ni t has PID 1 and is created during system initialization
* long running programs (1.e., shells) should always reap their zombie

children because they consume system memory
CS 4400—Lecture 17 3

wal t pi d Function

e A process waits for its children to terminate by calling

encodes info about child

determines members of the wait set modifies default behavior

| | |
pidt waitpid(pit t pid, int* status, int options);

* By default, wai t pi d suspends execution of the calling

process until a child process 1n its wait set terminates.
« if a process in the wait set has already terminated, wai t pi d returns
immediately
o returns the PID of the terminated child causing wai t pi d to return

e terminated child is then removed from the system

CS 4400—Lecture 17 4

Determining the Wait Set

e If pi d > 0, then the wait set 1s the singleton child process
whose PID 1s equal to pi d. If pi d =- 1, then the wait
set consists of all of the parent's child processes.

e Standard macros interpret the value of st at us.

« W FEXI TED(st at us) is true if child terminated normally
« W FEXI TSTATUS(st at us) returns exit status of child

e see text for more macros

e Ifthere are no children, wai t pi d returns -1 and err no

set to ECHI LD.

e also returns -1 if interrupted by a signal (er r no set to El NTR)
CS 4400—Lecture 17 5

Example: wal t pi d

[* waitpidl.c */

#i ncl ude "csapp. h" Will the children always be reaped “in order”?
#define N 2

int main() { uni x> ./ waitpidl

I nt st at us, |
pid t pid;

child 22966 termnated normally with exit status=100
child 22967 termnated nornmally with exit status=101

for(i =0; 1 <N 1++)
|f((p id = Fork()) ==0) [* child */
Xit(100+1);

/* parent waits for all of its children to termnate */
while((pid = waitpid(-1, &tatus, 0)) > 0) {
| f (W FEXI TED(st at us))
printf("child %dd termnated normally with exit status=%\n",
pi d, VEXI TSTATUS(st at us)) ;
el se
printf("child %d term nated abnornmal |l y\n", pid);

| f(errno !'= ECHI LD)
uni x_error("waitpid error");

exit(0);

Clicker Question

#i ncl ude "csapp. h"
Int main() {

| nt st at us;

pid t pid;
f(" HeIIo\n)

%@\ n", l pi d);
0)

pid(-1, &status, 0) > 0)
W FEXI TED(st atus) != 0)
ntf("%l\n", WEXI TSTATUS(st atus));

prin
exit

f Bye\n) ;
2

7~ —+

}

How many output lines does this program generate?

CLICK your one-digit answer.
CS 4400—Lecture 17

Clicker Question

#i ncl ude "csapp. h"

[* Wait() = Waitpid() wth pid and options set to
defaults; it blocks until any child term nates. */

Int main() {
| f(Fork() == 0) {
| f (Fork() == 0)

printf("a");
else {
idt pid; int status; -
Pf ((pi g = Vit (&status)) > 0) Is the output possible?
\ printf("b"); CLICK: 1-yes, 2-no
acdbd
el se {
printf("c"); adbdc
, SR abddc
rintf("d");
rpet urn(O;) cadbd
} bdadc

sl eep and pause

e sl eep suspends a process for some period of time.
unsi gned I nt sleep(unsigned int secs);

 returns 0 1f the requested amount of time has already elapsed

 otherwise, returns number of seconds left to sleep (will happen

if 1t was interrupted by a signal)

Don't try to use this function to ensure that one thing happens before another

e pause puts calling function to sleep until a signal 1s

received by the process.
| nt pause(void);

Don't use this function in a real program; use Si gsuspend

CS 4400—Lecture 17 9

execve Function

e Loads and runs a new program in the context of the

current process. argument list

executable object file ‘ environment variable list
| nt execve(char* filenanme, char* argv[], char* envp);
e execve returns to calling program only if there's an error.

 called once, never returns

e ar gv and envp each point to a NULL-terminated array

of pointers to strings.
* by convention, ar gv[0] = name of the executable object file
 cach environment variable string has form “ NAME=VALUE"

CS 4400—Lecture 17 10

Example: ar gv and envp

/* nyecho.c */

#i ncl ude "csapp. h"

int main(int argc, char* argv[], char* envp[]) {

int i;

printf(“Command |ine argunents:\n”);
for(i = 0; i < argc; i++)
printf(“\t argv[%d]: %\n”, i, argv[i]);

printf(“Environment variables:\n");
for(i = 0; envp[i]
printf(“\t envp[%d]: %\n”, i, envp[i]);

exit(0);

= NULL; i++)

(See text for functions
that manipulate envp.)

CS 4400—Lecture 17

| abl> ./ nmyecho argl
Command | i ne argunents:
argv[O0]: ./nyecho
argv[1]: argl
Envi ronnent vari abl es:
envp[0]: USER=epar ker
envp[1]: LOGNAME=epar ker

éth[lS]: PWD=/ hone/ epar ker / C54400/ code
envp[16] : GROUP=cspr of

Programs vs. Processes
* Program—collection of code and data

e Process—a specific instance of a program 1n execution

e for Kk runs the same program in a new child process that

is a duplicate of the parent process.

e execve loads and runs a new program in context of the

current process and does not create a new process.

e new program has same PID

e inherits all of the file descriptors that were open at the time of

the call to execve

CS 4400—Lecture 17

12

Shells

Unix shells make heavy use of f or k and execve, to

perform a sequence of read/evaluate steps.
Read step—read a command line from the user.

Evaluate step—parse the command line and run

programs on the behalf of the user.

. int main() {
Simple shell example: char cmdl i ne[MAXLI NE] ;

while(l) {
printf(“> “);
Fgets(cndl i ne, MAXLINE, stdin);
| f(feof (stdin))
exit(0);

eval (cndl i ne);

}

CS 4400—Lecture 17 }

I nt parseline(char* buf, char** argv);
int builtin_conmand(char** argv);

voi d eval (char *cndline) { /* evaluate a command |ine */
char *argv[MAXARGS]; /* argv for execve() */
char buf [MAXLI NE] ; /* holds nodified command |ine */
I nt bg; /* should the job run in bg or fg? */
pid t pid; /* process id */

strcpy(buf, cndline);
bg = parseline(buf, argv); /[/* true if last argv is & */
| f (argv[0] == NULL) return; /[* ignore enpty |lines */

I f(!builtin_comuand(argv))
1 f((pid = Fork()) == 0) /[* child runs user job */
| f (execve(argv[O0], argv, environ) < 0)
printf("%: Command not found.\n", argv[O0]);
exit(0);

/* parent waits for foreground job to termnate */
1T (1bg) {

I nt st at us;

| f(waitpid(pid, &status, 0) < 0)

uni x_error("waitfg: waitpid error");

}
el se

printf("% %", pid, cndline);

return;
} /* shell is flawed because children not reaped */

Signals

e Signal—a message that notifies a process that an event of

some type has occurred 1n the system.

e allows processes to interrupt other processes

* Transfer of a signal to a destination process:
1. Kernel sends a signal to a destination process by updating some
state in the context of the destination process.
2. A destination process receives a signal when it 1s forced by the
kernel to react (ignore signal, terminate, or catch signal) to the

delivery of the signal.

* (See text for a list of Linux signals.)

CS 4400—Lecture 17 15

Pending Signals
Pending signal—sent but not yet received.

At any point, there can be at most one pending signal of a

particular type.

If a process p has a pending signal of type £, any

subsequent signals of type k sent to p are discarded.

A process can selectively block receipt of certain signals

(signal 1s delivered, but not received until unblocked).
A pending signal is received at most once.

Kernel keeps track of pending and blocked signals.

CS 4400—Lecture 17 16

Process Groups

e Every process belongs to exactly one process group.
 a process group is identified by a process group ID >0

e pid t getpgrp(voil d) returns process group ID of current process

e By default, a child process belongs to the process group

of 1ts parent.

e set pgi d changes the process group of pi d to pgi d.
pidt setpgid(pidt pid, pidt pgid);
o if pi d=0, PID of current process is used
 if pgi d=0, PID of process specified by pi d is used for group id
e what does set pgi d(0, 0) do?

CS 4400—Lecture 17 17

Sending Signals
ki I'l sends signal number si g to other process(es).
int kill(pird t pid, int sig);
e 1f pi d > 0, sends to process pi d

e 1f pi d <0, sends to every process 1n process group abs(pi d)

#i ncl ude "csapp. h"

int main() {
pid t pid;

/[* child sleeps until SIGKILL signal received
then dies */

1 f((pid = Fork()) == 0) {
Pause(); /* wait for signal */
printf(“control never reaches here”);
exit(0);

/* parent sends SIGKILL signal to child */
Kill(pid, SIGKILL);
exit(0);

Recelving Signals
 When the kernel 1s ready to pass control to process p, it

checks the set of pending, unblocked signals.
« if the set 1s empty, continue with / _ in p

e otherwise, choose some signal number £ (usually the smallest) from

the set and force p to receive the signal
e The process completes some action in response and then

control passes to/ .
next

e Each signal has a default action (see text). Process either
terminates, terminates and dumps core, stops until

restarted by SI GCONT signal, or ignores signal.

CS 4400—Lecture 17 19

Modifying Default Action

si gnal modifies the default action for a signal.
handl er t* signal (int signum handler t* handler);
* handl er is the address of a user-defined function

* (see text for more options)
e default actions of SI GSTOP and SI GKI LL cannot be changed

#i ncl ude "csapp. h"

void handler(int sig) /* SIGANT handler */
printf(“Caught SIG NT\n");
exit(0);

Int main() {
[* Install SI A NT handler */
| f (signal (SIA NT, handler) == SI G ERR)
uni x_error(“signal error”);

pause(); [/* Wait for ctrl-c fromkeyboard */
exit(0);

Explicitly Blocking Signals

e si gpr ocmask explicitly blocks selected signals.

I nt sigprocmask(int how, sigset t* set, sigset t* ol dset);

* The set of blocked signals 1s maintained as a bit vector

bl ocked.

e Behavior depends on argument how.
« SI G BLOCK—adds signals in set to bl ocked
(bl ocked | = set)
« SI G_UNBLOCK—removes signals in set from bl ocked
(bl ocked &= ~set)
« SI G SETMASK—bI ocked = set

CS 4400—Lecture 17 21

void handler(int sig) {
pidt pid;
while((pid = waitpid(-1, NULL, 0)) > 0) /* Reap a zonbie child */
del etejob(pid); /* Delete the child fromthe job list */
i f(errno !'= ECHI LD)
uni Xx_error("waitpid error");

}

int main(int argc, char** argv) {
I nt pid;
si gset _t nmask;

Si gnal (SI GCHLD, handl er);
initjobs(); /* Initialize job list (to keep track of children) */

whil e(1l) {
Si genpt yset (&ask) ;
Si gaddset (&rask, S| GCHLD) ;
Si gprocmask(SI G BLOCK, &mask, NULL); /* Bl ock SI GCHLD */

[* Child process */

1 f((pid = Fork()) == {
Si gprocmask(SI G UNBLOCK, &mask, NULL); /* Unbl ock SI GCHLD */
Execve("/bin/ls", argv, NULL);

}

/* Parent process */
addj ob(pid); /* Add the child to the job list */
Si gprocmask(SI G UNBLOCK, &mask, NULL); /* Unbl ock SI GCHLD */

I
exit(0);

Nonlocal Jumps

e Transfer control from one function to another currently
executing function, without having to go through the
normal call-and-return sequence.

e set | np saves the current stack context in env.
| nt set) np(j np_buf env);

* | ongj np restores the stack context from the env buffer
and then triggers a return from the most recent set | np

call that initialized env.
I nt | ongjnp(j np_buf env, int retval);

e set | np then returns with return value r et val
CS 4400—Lecture 17 23

Nonlocal Jumps

* setj np 1s called once and returns multiple times.
e once when it 1s first called and stack context 1s saved

 once for each corresponding call to | ongj np

e | ongj np 1s called once and never returns.

e Nonlocal jumps permit
« immediate return from a deeply-nested function call, usually as a
result of detecting some error (return directly to an error handler,
rather than unwinding the call stack)
 branching out of a signal handler to a specific code location, rather
than returning to the instruction that was interrupted at the arrival of

the signal
CS 4400—Lecture 17 24

j mp_buf buf;

int errorl
I Nt error?2

voi d foo(void),

0;
1;

int main() {

}

voi d foo(void) {

i nt rc;

rc = setjnp(buf); /*

1 f(rc == 0) [*
foo();

else if(rc ==
printf("Detected an
else if(rc ==
printf("Detected an
el se

bar (voi d) ;

returns O when called directly */
returns !'=0 when called indirectly */

errorl condition in foo\n");

error2 condition in foo\n");

printf("Unknown error condition in foo\n");

exit(0);

| f(errorl)

| ongj mp(buf, 1);
bar () ;

voi d bar(void) {

| f(error?2)
| ongj np(buf, 2);

/* deeply nested function foo */

[* restart.c */
si gj np_buf buf;

void handler(int sig) {
si gl ongj np(buf, 1); /* version of longjnp that can be */
[* used by signal handlers */
[* 1 neans to restore the signal mask */
int main() {
Si gnal (SI A NT, handl er);

| f(!sigsetjnmp(buf, 1)) /* version of setjnp for sig handlers */
printf("starting\n"); /* 1 neans to save the signal mask */
el se
printf("restarting\n");

while(1l) {
Sl eep(1);
printf("processing...\n");

exi t(0); uni x> ./restart
} starting

processi ng. . .
processing. ..

restarting user types ctri-c
processi ng. ..
restarting user types ctri-c

processi ng. ..

CS 4400—Lecture 17 26

Summary

ECF occurs at all levels of a computer system.

Hardware level: interrupt, trap, fault, and abort classes

of exceptions.

OS level. a process provides the 1llusion that a program

has exclusive use of the processor and memory.

Application level: apps can create and wait for child
processes, run new programs, and catch signals from

other processes.
e C programs can use nonlocal jumps to bypass the normal call/return

stack discipline and branch directly to a function.
CS 4400—Lecture 17 27

Notes on Lab 5 — START EARLY

The shell example (slides 13-14) 1s good starting point.

Other examples from the textbook that we did not cover

will be helpful.
 HINT: Read every word of Chapter 8.

Be sure to look at specifics: signal types, function

options and statuses, error codes, ...

5 of 90 points for checking system call return values and

5 0of 90 points for good comments (unlike previous labs).

Output of your shell and reference shell must match!

CS 4400—Lecture 17 28

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

