
CS 4400

Computer Systems

LECTURE 16

Exceptions

Processes

Process control

Control Flow

CS 4400—Lecture 16 2

● The program counter assumes a sequence of values
a

0
, a

1
, ..., a

n-1

where a
k
 is the address of a corresponding instruction I

k
.

● Each transition from a
k
 to a

k+1
 is called control transfer.

● A sequence of such control transfers is the control flow of

the processor.

● Smooth control flow: each I
k
, I

k+1
 are adjacent in memory.

● Abrupt changes to smooth flow: familiar jump, call, and

return program instructions.

Exceptional Control Flow (ECF)

CS 4400—Lecture 16 3

● ECF—abrupt changes in control flow that are not

captured by internal program variables.

● Hardware: abrupt control transfers to exception handlers

triggered by hardware-detected events. Examples?

● Operating systems: the kernel transfers control from one

user process to another (via context switches).

● Applications: a process can send a signal to another

process that abruptly transfers control to a signal handler

(at the receiving process).

Why Care About ECF

CS 4400—Lecture 16 4

● To understand important systems concepts
● the basic mechanism OSs use to implement I/O, processes, VM

● To understand how apps interact with the OS
● apps request services from the OS using a trap (or system call)

● To write interesting new application programs
● the OS provides apps with mechanisms for ... (writing a shell)

● To understand how software exceptions work
● C++/Java provide software exception mechanisms, allowing a

program to make nonlocal jumps (high level)

● nonlocal jump functions are provided in C (low level)

Exceptions

CS 4400—Lecture 16 5

Application
program

I
curr

I
next

Event (significant
change in processor
state) occurs

Exception (indirect
procedure call)

Exception handler
(an OS subroutine)

Exception
processing

Exception
return

(to I
curr

 or I
next

)
or abort

The event might be directly related to I
curr

 (e.g., divide by 0),

or the event may be unrelated (e.g., an I/O request completes).

Exception Handling

CS 4400—Lecture 16 6

● Each possible type of exception gets a unique integer > 0
● some assigned by processor designers (div by 0, page fault, ...)

● others assigned by OS kernel designers (system calls, signals)

● At boot time, the OS allocates and initializes an

exception table (a jump table).
● entry k contains the address of the handler code for exception k

● When the processor detects an event, it determines k and

makes an indirect procedure call to the handler for k.
● a special CPU register holds starting address of exception table

● the exception handler is an index into the exception table

Exception vs. Procedure Call

CS 4400—Lecture 16 7

● Both push a return address onto the stack before

branching to handler. For exception, may be I
curr

 or I
next

.

● For exception, also pushes some processor state

necessary to restart the interrupted program on return.

● For exception, if control is being transferred to the

kernel, all items are pushed onto the kernel's stack

(instead of the user's stack).

● Exception handlers run in kernel mode (complete access

to all system resources).

Exception Class: Interrupts

CS 4400—Lecture 16 8

Application
program

I
curr

I
next

(1) Interrupt detected
 during I

curr
 execution

 (exception # on system bus)

(2) Control passes to handler
 after I

curr
 finishes

Exception handler
(an OS subroutine)

(3) Interrupt
 handler runs

(4) Handler returns
 to I

next

● Interrupts occur asynchronously as a result of signals from

I/O devices external to the processor.
● asynchronous because not caused by execution of an instruction

● Effect—program executes as if the interrupt never happened.

Exception Class: Traps

CS 4400—Lecture 16 9

Application
program

syscall n
I

next

(1) Application makes
 a system call to
 request service “n”
 (appears identical
 to regular func call)

(2) Control passes to handler

Exception handler
(an OS subroutine)

(3) Trap handler runs
 (decodes “n” and
 calls appropriate
 kernel routine)

(4) Handler returns
 to I

next

● Traps are intentional exceptions that occur as a result of

executing an instruction.
● provides procedure-like interface between user programs and kernel

(system call)

Exception Class: Faults

CS 4400—Lecture 16 10

● Faults result from error conditions that a handler might be

able to correct.
● classic example: page fault exception

Application
program

I
curr

(1) Current instruction
 causes a fault

(2) Control passes to handler

Exception handler
(an OS subroutine)

(3) Fault handler runs

(4) Handler either
 reexecutes I

curr

 or aborts

abort

Exception Class: Aborts

CS 4400—Lecture 16 11

● Aborts result from unrecoverable fatal errors.
● such as parity errors, when DRAM or SRAM bits are corrupted

Application
program

I
curr

(1) Fatal hardware
 error occurs

(2) Control passes to handler

Exception handler
(an OS subroutine)

(3) Abort handler runs

(4) Handler returns
 to abort routine

abort

Example: Pentium Exceptions

CS 4400—Lecture 16 12

Number Description Class

0 Divide error Fault
(Unix does not recover)

13 General protection fault Fault
(ref to undefined memory) (Unix does not recover)

14 Page fault Fault
(faulting instruction restarted)

18 Machine check Abort
(fatal hardware error)

32-127 OS-defined exceptions Interrupt or Trap

128 System call Trap
(trapping instruction INT n)

129-255 OS-defined exceptions Interrupt or Trap

Processes

CS 4400—Lecture 16 13

● Process—an instance of a program in execution

● Provides the illusion that our program is the only one

currently running in the system.
● exclusive use of processor and memory

● instructions executed one after another without interruption

● program code and data are the only objects in system's memory

● Each program runs in the context of some process.
● program's code and data stored in memory, run-time stack,

register contents, program counter, environment variables, and set of

open file descriptors

Processes

CS 4400—Lecture 16 14

● When the user types the name of an executable object file

at the shell prompt,
● the shell creates a new process

● the shell runs the program in the context of this new process

● Applications can also create new processes.

● Two key abstractions are provided by processes:
● an independent logical control flow (illusion of exclusive use of

processor)

● private address space (illusion of exclusive use of memory)

Logical Control Flow

CS 4400—Lecture 16 15

● Logical control flow—a sequence of PC values that

correspond exclusively to instructions in our program's

executable object file.
● or in shared objects linked into our program dynamically

● Multitasking—each process executes a portion of its flow,

then is preempted while other processes take their turns.
● time slice—each time period that process executes a portion of its flow

● A precise timing of instructions is the only evidence that

our process does not have exclusive use of the processor.

Example: Logical Control Flow

CS 4400—Lecture 16 16

Process B Process CProcess A
T

im
e

● The single physical control flow of the processor is

 partitioned into three logical flows.

● A & B are running concurrently, B & C are not.

Context Switches

CS 4400—Lecture 16 17

● Scheduling—decision by kernel to preempt the current

process and restart a previously preempted process.

● After the kernel has scheduled a new process to run, it

preempts the current process and transfers control to the

new process using a context switch.

● The context switch
● saves the context of the current process

● restores the saved context of a previously preempted process

● passes control to the newly restored process

Example: Context Switch

CS 4400—Lecture 16 18

user code

kernel code

user code

kernel code

user code

Process BProcess A

T
im

e

read

disk interrupt

return from read

context
switch

context
switch

● Process A issues a read that requires disk access.

● Instead of waiting for the data, the kernel opts to perform a context

 switch and run process B.

● Once the disk sends an interrupt, the kernel performs a context

switch from B to A.

● Control returns to A at the instruction immediately after the read.

System Calls

CS 4400—Lecture 16 19

● Unix provides system calls for applications to use when

they want to request services from the kernel.

● Rather than invoke a system call directly, the C library

offers a set of wrapper functions for most system calls.

● When such system-level functions encounter an error,

they set error codes that should always be checked.

● (See the text for these useful error-handling wrappers.)

if((pid = fork()) < 0) {
 fprintf(stderr, “fork error: %s\n”,
 strerror(errno));
 exit(0);
}

pid = Fork();

Getting Process IDs

CS 4400—Lecture 16 20

● Unix provides systems calls for manipulating processes

from C programs.

● Each process has a unique process ID (PID) > 0.

#include <unistd.h>
#include <sys/types.h>

/* returns PID of current process */
pid_t getpid(void);

/* returns PID of parent of current process */
pid_t getppid(void);

Process States

CS 4400—Lecture 16 21

From the perspective of the programmer, a process can be in

one of three states.

● Running—either executing on CPU or waiting to be executed

and will eventually be scheduled.

● Stopped—execution suspended, will not be scheduled.
● received a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal

● must receive a SIGCONT signal to become running again

● Terminated—stopped permanently.
● receiving a signal whose default action is to terminate process

● returning from main

● calling exit

fork Function

CS 4400—Lecture 16 22

● A parent process creates a new running child process .

pid_t fork(void);

● The child process is nearly identical to the parent.
● duplicate, but separate address spaces (stack, heap, ...)

● identical copies of parent's open file descriptors

● parent and child have different PIDs

● The fork function returns twice!
● once in the calling process (the parent)—returns the child's PID

● once in the newly created child process—returns 0

● Parent and child are separate processes running concurrently.

Example: fork

CS 4400—Lecture 16 23

/* fork.c */

#include “csapp.h” /* error-handling wrappers */

int main() {
 pid_t pid;
 int x = 1; /* each process gets copy */

 pid = Fork();
 if(pid == 0) { /* child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

unix> ./fork
parent: x = 0
child : x = 2

Example: fork

CS 4400—Lecture 16 24

#include “csapp.h”

int main() {
 Fork();
 printf(“hello\n”);
 exit(0);
}

#include “csapp.h”

int main() {
 Fork();
 Fork();
 printf(“hello\n”);
 exit(0);
}

fork

hello

hello

fork

hello

hello

hello

hello

fork

Exercise: fork

CS 4400—Lecture 16 25

#include “csapp.h”

int main() {
 int x = 1;

 if(Fork() == 0)
 printf(“printf1: x=%d\n”, ++x);
 printf(“printf2: x=%d\n”, --x);
 exit(0);
}

Output of parent process?

Output of child process?

Clicker Question

CS 4400—Lecture 16 26

How many “hello” output lines does this program print?

CLICK your one-digit answer.

#include “csapp.h”

int main() {
 int i;

 for(i = 0; i < 2; i++)
 Fork();
 printf(“hello\n”);
 exit(0);
}

Clicker Question

CS 4400—Lecture 16 27

#include “csapp.h”

int doit() {
 Fork();
 Fork();
 printf(“hello\n”);
 exit(0);
}

int main() {
 doit();
 printf(“hello\n”);
 exit(0);
}

How many “hello” output lines does this program print?

CLICK your one-digit answer.

Clicker Question

CS 4400—Lecture 16 28

#include “csapp.h”

int doit() {
 Fork();
 Fork();
 printf(“hello\n”);
 return;
}

int main() {
 doit();
 printf(“hello\n”);
 exit(0);
}

How many “hello” output lines does this program print?

CLICK your one-digit answer.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

