
CS 4400

Computer Systems

LECTURE 14

Linking

Object files and format

Symbols and symbol tables

New to C?: static Attribute

CS 4400—Lecture 14 2

The static attribute has two jobs:

case 1: static inside a function

case 2: static outside a function

These two uses are related; the first implies the second

New to C?: static Attribute, case 1

CS 4400—Lecture 14 3

Suppose we want to count the number of times a particular

function is invoked. Why won't the following work?

A static var's storage is allocated for the entire program.
● a static variable is initialized only once (defaults to zero)

void my_function() {
int count = 0;
printf(“invoked %d times\n”, ++count);

}

void my_function() {
static int count = 0;
printf(“invoked %d times\n”, ++count);

}

New to C?: static Attribute, case 2

CS 4400—Lecture 14 4

● static functions and variables may be referenced only

by code contained in the same file.

● Like private in C++/Java, the static attribute is used

to hide variable and function declarations inside

modules.
● In C, any global variable or function declared without the

 static attribute is public and can be accessed by other

 modules.

● In C, any global variable or function declared with the

 static attribute is private to that module.

Linking

CS 4400—Lecture 14 5

● Linking—the process of collecting and combining

various pieces of code and data into a single file that can

be copied into memory and executed.

● Linking can be performed at
● compile time—when the code is translated into machine code

● load time—when the program is copied into memory

● run time

● Linkers enable separate compilation.
● Upon changing one module of a large application we must recompile

the module, relink the application (not recompile the other modules).

Why Care About Linking

CS 4400—Lecture 14 6

● helps you build large programs
● linker errors caused by missing modules, missing libraries, or

incompatible library versions are not uncommon

● helps you avoid dangerous programming errors
● multiple global symbols which are incorrectly defined may pass

through the linker without any warnings (more later)

● helps you understand language scoping rules
● difference in global and local vars, how to handle static

● enables you to exploit shared libraries
● shared libraries and dynamic linking are increasingly important

Example Program

CS 4400—Lecture 14 7

/* main.c */

void swap();

int buf[2] = {1, 2};

int main() {
 swap();

 return 0;
}

/* swap.c */

extern int buf[];

int* bufp0 = &buf[0];
int* bufp1;

void swap() {
 int temp;

 bufp1 = &buf[1];
 temp = *bufp0;
 *bufp0 = *bufp1;
 *bufp1 = temp;
}

● The program consists of
two source files.

● Global variable buf is declared in main.c but visible
in swap.c.

● Function swap swaps the two elements in array buf.

Compiler Driver

CS 4400—Lecture 14 8

● A compiler driver invokes the language preprocessor,

compiler, assembler, and linker.

● Invoke the driver: > gcc -O2 -o p main.c swap.c

● Run the executable p: > ./p
● The shell invokes the loader, which copies code/data of p into

memory and transfers control to beginning of program.

Translation
(ccp, cc1, as)

Translation
(ccp, cc1, as)

main.c swap.c

main.o

Linker (ld) p

swap.o

Object Files

CS 4400—Lecture 14 9

● main.o and swap.o are relocatable object files.

● An object file is merely a collection of blocks of bytes.
● some blocks contain program code

● other blocks contain program data

● yet other blocks contain info to guide the linker and loader

● Three types of object files:
● relocatable—can be combined with other relocatable object files at

compile time to create an executable object file

● executable—can be copied directly into memory and executed

● shared—special type of relocatable object file that can be loaded into

memory and linked dynamically (load or run time)

Static Linking

CS 4400—Lecture 14 10

● The Unix ld program is an example of a static linker.
● input: a collection of relocatable object files (main.o, swap.o)

● output: a fully-linked executable file (p)

● Object files define and reference symbols.
● symbol resolution—associates each symbol reference with exactly one

symbol definition

● Compilers and assemblers generate code and data

sections that start at address 0.
● relocation—associates a memory location with each symbol

definition and modifies its references to point to this location

ELF Object File Format

.text

ELF header

section header table

.rodata

.data

.bss

.symtab

.rel.text

.rel.data

.debug

.line

.strtab

word size, byte order, object file type, offset/size of section header table

locations and sizes of the various sections (fixed entry for each)

machine code of the compiled program

read-only data (e.g., printf format strings and jump tables)

initialized global vars (recall that local vars are stored on the stack)

uninitialized global vars (no actual space, just a placeholder)

symbol table (info about functions and global vars, unlike compiler's)

locs in .text that reference external fns or vars (linker must modify)

locs in .data whose initial value is address of external fns or vars

symbol table like compiler's (w/ locals), must compile with -g

mapping of source code line #s to machine code, must compile with -g

sequence of null-terminated char strings, for .symtab and .debug

Symbols

CS 4400—Lecture 14 12

● Global symbols—defined by module m and can be

referenced by other modules
● e.g., C functions and globals defined without the static attribute

● Externals—symbols referenced by m, but defined by

some other module
● e.g., C functions and variables defined in other modules

● Local symbols—defined and referenced exclusively by

module m
● e.g., C functions and globals defined with the static attribute

● does not include non-static locals (maintained on the stack)

Symbol Tables

CS 4400—Lecture 14 13

The .symtab section contains an array of entries, each

with the following information about an object:

● name—offset into the string table, pointing to symbol's name

● value—offset from beginning of section where object is defined

(relocatable) or an absolute run-time address (executable)

● size—number of bytes for the object

● type—data (OBJECT) or function (FUNC)

● binding—global or local

● section—index into section header table or special pseudosections

(ABS—symbols that should not be relocated, UND—symbols that are

referenced but not defined, COM—uninitialized, unallocated symbols)

Example: Symbol Tables

CS 4400—Lecture 14 14

Num: Value Size Type Bind Ot Ndx Name
 8: 0 8 OBJECT GLOBAL 0 3 buf
 9: 0 17 FUNC GLOBAL 0 1 main
 10: 0 0 NOTYPE GLOBAL 0 UND swap

last three entries of symbol table for main.o (displayed by the readelf tool)

Num: Value Size Type Bind Ot Ndx Name
 8: 0 4 OBJECT GLOBAL 0 3 bufp0
 9: 0 0 NOTYPE GLOBAL 0 UND buf
 10: 0 39 FUNC GLOBAL 0 1 swap
 11: 4 4 OBJECT GLOBAL 0 COM bufp1

symbol table entries for swap.o

● Ndx=1 denotes the .text section, Ndx=3 the .data section.

● For COM symbols, Value gives the alignment and Size the max size.

● The first eight entries are local symbols that the linker uses internally.

Clicker Question
● Does it have a symbol table entry?

CLICK: 1-yes, 2-no

● If so, what is its type?

CLICK: 1-local, 2-global, 3-extern

● Which module defines it?

CLICK: 1-swap.o, 2-main.o

● Which section does it occupy?

CLICK: 1-.text, 2-.data, 3-.bss

● Example – buf: yes, extern, main.o, .data

● Symbols referenced in swap.o: bufp0, bufp1, swap, temp

extern int buf[];

int* bufp0 = &buf[0];
int* bufp1;

void swap() {
 int temp;

 bufp1 = &buf[1];
 temp = *bufp0;
 *bufp0 = *bufp1;
 *bufp1 = temp;
}

CS 4400—Lecture 14 15

Symbol Resolution

CS 4400—Lecture 14 16

● The linker associates each symbol reference with exactly

one definition from the symbol tables of its input

relocatable object files.
● trivial for a local symbol (one per module, unique name)

● tricky for a global symbol

● The compiler assumes foo is defined in some other

module and generates a symbol table entry (leaving

it for the linker to handle). /* linkerror.c */
void foo();
int main() {
 foo();
 return 0;
}

> gcc -Wall -O2 linkerror.c
/tmp/ccYEn1m9.o(.text+0x7): In function `main':
: undefined reference to `foo'
collect2: ld returned 1 exit status

Multiply-Defined Symbols

CS 4400—Lecture 14 17

● What if the same global symbol is defined by multiple

object files?
● Linker must report an error or choose one of the definitions.

● Is this a problem for C++/Java overloaded methods?

● The compiler exports symbols as strong (functions and

initialized globals) or weak (uninitialized globals).

● Unix linkers use the following rules:
1. Multiple strong symbols are not allowed.

2. If multiple weak symbols and a strong symbol, choose strong.

3. If multiple weak symbols, choose any one.

Example: Rule 1

CS 4400—Lecture 14 18

/* foo1.c */
int main() {
 return 0;
}

/* bar1.c */
int main() {
 return 0;
}

> gcc foo1.c bar1.c
/tmp/ccvzRoJL.o(.text+0x0): In function `main':
: multiple definition of `main'
/tmp/ccepVLhT.o(.text+0x0): first defined here

/* foo2.c */
int x = 15213;
int main() {
 return 0;
}

/* bar2.c */
int x = 15213;
void f() {}

> gcc foo2.c bar2.c
/tmp/ccXhFAzx.o(.data+0x0): multiple definition of `x'
/tmp/cccOqVLn.o(.data+0x0): first defined here

Example: Rule 2

CS 4400—Lecture 14 19

/* foo3.c */
#include <stdio.h>

void f();

int x = 15213; /* strong */

int main() {
 f();
 printf(“x = %d\n”, x);
 return 0;
}

/* bar3.c */
int x; /* weak */

void f() {
 x = 15212;
}

> gcc foo3.c bar3.c
> ./a.out
x = 15212

At run time, f changes the value of x from 15213 to 15212.

The linker gives no indication that it found multiple defs of x
(unless Rule 1).

Example: Rule 3

CS 4400—Lecture 14 20

/* foo4.c */
#include <stdio.h>

void f();

int x; /* weak */

int main() {
 x = 15213;
 f();
 printf(“x = %d\n”, x);
 return 0;
}

/* bar4.c */
int x; /* weak */

void f() {
 x = 15212;
}

> gcc foo4.c bar4.c
> ./a.out
x = 15212

Example: Rule 2

CS 4400—Lecture 14 21

/* foo5.c */
#include <stdio.h>

void f();

int x = 15213; /* strong */
int y = 15212;

int main() {
 f();
 printf(“x = 0x%x y = 0x%x \n”, x, y);
 return 0;
}

/* bar5.c */
double x; /* weak */

void f() {
 x = -0.0;
}

> gcc foo5.c bar5.c
/usr/bin/ld: Warning: alignment 4 of symbol `x' in

/tmp/ccY13dOq.o is smaller than 8 in /tmp/cc8VBPpA.o
> ./a.out
x = 0x0 y = 0x80000000

Alignment of (8-byte) x in bar5.c overwrites memory locations for
(4-byte) x and (4-byte) y in foo5.c with the double-precision
floating-point representation of negative 0.

Clicker Question

CS 4400—Lecture 14 22

REF(x.i) → DEF(x.k) denotes that linking will associate

any reference to x in module i to the definition of x in k.

/* Module 1 */
int main() {}

/* Module 2 */
int main;
int p2() {}

REF(main.1) → DEF(??)
REF(main.2) → DEF(??)

/* Module 1 */
void main() {}

/* Module 2 */
int main = 1;
int p2() {}

REF(main.1) → DEF(??)
REF(main.2) → DEF(??)

/* Module 1 */
int x;
void main() {}

/* Module 2 */
double x = 1.0;
int p2() {}

REF(x.1) → DEF(??)
REF(x.2) → DEF(??)

CLICK: 1-main.1, 2-main.2, 3-ERROR, 4-UNKNOWN

CLICK: 1-x.1, 2-x.2, 3-ERROR, 4-UNKNOWN

CLICK: 1-main.1, 2-main.2, 3-ERROR, 4-UNKNOWN

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

