
CS 4400

Computer Systems

LECTURE 13

More on caches

Writing cache-friendly code



Review
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●  Why is memory organized as a hierarchy?

●  What is cache memory and how is it organized?

●  What is a cache hit/miss?

●  What are some policies for replacement on a cache miss?

●  What are the 3 categories of cache misses and when does 

each occur?



Clicker Question
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Consider a 4-way set associative cache with 1024 total 

bytes and 32-byte blocks.  To what cache set does the item 

at address 0x457A map?

CLICK your one-digit answer.

If you have ResponseCard clicker, channel is 41.

If you are using ResponseWare, session id is CS1400U.



Write-Hit Policy
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●  What happens when the CPU writes data at address x?

●  If x is in the cache, it is a write-hit.  

●  On a write-hit, main memory may be updated at the time 

of the hit (write-through) or only when the cache block is 

evicted from the cache (write-back).

●  What are the consequences of each policy?

●  Which policy requires a dirty bit?



Write-Miss Policy

●  If x is not in the cache, it is a write-miss.  

●  Fetch-on-write (or write-allocate): Word at x is written to 

cache and the other words in block are fetched from 

main memory.  Why?

●  Write-around:  Word at x is written directly to main 

memory.  What happens next time x is required?

●  Write-validate:  Word at x is written to cache and the 

other words in block are marked as invalid.
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Types of Caches

●  Caches can hold 
● only instructions (i-caches),

● only data (d-caches), 

● or both instructions and data (unified caches)

●  Typical desktop systems have an L1 i-cache and an L1 

d-cache on chip, and an L2 unified cache off chip.

●  What is the advantage of separate i-cache and d-cache?

●  What is the advantage of a unified cache?
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Cache Performance Metrics
●  Miss rate—fraction of memory references that miss

● # of misses / total # of references

●  Hit rate—fraction of memory references that hit
● # of hits / total # of references OR 1 – miss rate

●  Hit time—time to deliver a word from cache to CPU
● includes set selection, frame (or line) id, word selection

● typically 1-2 cycles for L1 caches

●  Miss penalty—additional time required because of a miss
● penalty for L1 misses (served from L2) is typically 5-10 cycles

● penalty for L2 (served from main memory) typically 25-100
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Impact of Size

●  Larger cache capacity
●  PRO: increases hit rate

●  CON: increases the hit time and expense

●  Larger block size
●  PRO: can increase hit rate (by exploiting spatial locality)

●  CON: decreases the number of cache frames (which can hurt     

  the hit rate if temporal locality outweighs spatial)

●  CON: increases the miss penalty (larger transfer time)

●  typical compromise:  B = 4 to 8 words

CS 4400—Lecture 13      8



Impact of Associativity
●  Higher associativity (larger values of E)

●  PRO: decreases cache's vulnerability to thrashing due to   

 conflict misses

●  CON: increases the hit time (more tag comparisons and              

 additional LRU state bits)

●  CON: increases the miss penalty (increases complexity of          

  choosing which cache frame to evict)

●  Essentially a trade-off between hit time and miss penalty.
●  typically direct-mapped L1 and E = 2 or 4 for L2 is favored

●  but, no hard and fast rules
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Writing Cache-Friendly Code
1. Make the common case fast.

● Programs often spend most of their time in a few core functions  

which spend their time in a few loops.  Focus on these loops. 

2. Minimize the number of cache misses in each inner loop.
● Assuming that all other things are equal (such as total number of 

memory references), loops with better miss rates run faster.

* compiler can cache i and sum in the 

   register file

* stride-1 reference pattern is good 

   for spatial locality

* if B=16, 3 out of 4 references will hit 

   (best possible with cold cache)CS 4400—Lecture 13      10

int sumvec(int v[N]) {
  int i, sum = 0;

  for(i = 0; i < N; i++)
    sum += v[i];

  return sum;
}



Exercise:  Cache-Friendly Code
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struct {
  int x;
  int y;
} grid[16][16];

int total_x = 0, total_y = 0;
int i, j;

for(i = 0; i < 16; i++)
  for(j = 0; j < 16; j++)
    total_x += grid[i][j].x;

for(i = 0; i < 16; i++)
  for(j = 0; j < 16; j++)
    total_y += grid[i][j].y;

● Assume a DM cache with   
   B=16, C=1024, S=64.

● Array grid requires 2048   
   bytes, why? 

● The cache can hold only half   
   of the array.

● Total number of reads?

● Number of misses?

● Miss rate?

● How can the number of misses be reduced?



Clicker Question
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struct {
  int x;
  int y;
} grid[16][16];

int total_x = 0, total_y = 0;
int i, j;

for(i = 0; i < 16; i++)
  for(j = 0; j < 16; j++) {
    total_x += grid[j][i].x;
    total_y += grid[j][i].y;
  }

● Assume a DM cache with   
   B=16, C=1024, S=64.

● What is the miss rate?

CLICK:

A.  12.5%

B.  25%

C.  50%

D.  75%

E.  100%

F.   none of the above

●  What if E=2, S=32?



Clicker Question

  

  

  

  

  

CS 4400—Lecture 13      13

struct {
  int x;
  int y;
} grid[16][16];

int total_x = 0, total_y = 0;
int i, j;

for(i = 0; i < 16; i++)
  for(j = 0; j < 16; j++) {
    total_x += grid[i][j].x;
    total_y += grid[i][j].y;
  }

● Assume a DM cache with   
   B=16, C=1024, S=64.

● What is the miss rate?

CLICK:

A.  12.5%

B.  25%

C.  50%

D.  75%

E.  100%

F.   none of the above

●  What if C=2048, S=128?



Clicker Question
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struct {
  int x;
  int y;
} grid[16][16];

int total_x = 0, total_y = 0;
int i, j;

for(i = 0; i < 16; i++)
  for(j = 0; j < 16; j++) {
    total_x += grid[i][j].y;
    total_y += grid[i][j].x;
  }

● Assume a DM cache with   
   B=16, C=1024, S=64.

● What is the miss rate?

CLICK:

A.  12.5%

B.  25%

C.  50%

D.  75%

E.  100%

F.   none of the above

●  What if B=32, S=32?



Memory References in Nested Loops

●  When nested loops access memory, successive iterations 

often reuse the same word (temporal locality) or use adjacent 

words that occupy the same cache block (spatial locality).

●  If it is the innermost loop whose iterations reuse the same 

words (or blocks), there will be many cache hits. 

●  But if one of the outer loops reuses a cache block, it may be 

that the inner loops access enough data to displace the block 

before its reuse.
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Example:  Loop Nest

●  B[i][j+1][k] is reused in the next two iterations of the 

j-loop.  How?

●  But before the next iteration of j-loop, the k-loop accesses 

4*P array elements.

●  It is possible that these accesses conflict with 

B[i][j+1][k], causing a miss the next time it's fetched.

for(i = 0; i < N; i++)
  for(j = 1; j < M-1; j++)
    for(k = 0; k < P; k++)
      A[i][j][k] = (B[i][j-1][k] + B[i][j][k] + B[i][j+1][k]) / 3;
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Loop Interchange

●  We can interchange the j-loop and the k-loop.

●  Now B[i][j][k] and B[i][j-1][k] are highly likely 

to be cache hits.

●  Is this loop interchange legal?  (I.e., does it yield the

same result?)

●  Is loop interchange always legal?  
CS 4400—Lecture 13      17

for(i = 0; i < N; i++)
  for(k = 0; k < P; k++)
    for(j = 1; j < M-1; j++)
      A[i][j][k] = (B[i][j-1][k] + B[i][j][k] + B[i][j+1][k]) / 3;



Loop-Interchange Legality

●  Does interchanging the j-loop and the k-loop 

decrease the number of cache misses?

●  Is interchanging the j-loop and the k-loop legal?
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for(i = 0; i < N; i++)
  for(j = 1; j < M-1; j++)
    for(k = 0; k < P-1; k++) {
      A[i][j][k] = (B[i][j-1][k] + B[i][j][k] + B[i][j+1][k]) / 3;
      C[i][j] = C[j-1][k+1];
    }



Example:  Matrix Multiply

●  Suppose N=50, each element is a double (8 bytes), and the 

cache capacity is 16 kilobytes.

●  Every reference to B[k][j] in the innermost loop misses.  

All other elements of B map to the cache in between its use 

and reuse in the i-loop and there is no spatial locality.

●  Will interchanging any of the loops help?

for(i = 0; i < N; i++)
  for(j = 0; j < N; j++)
    for(k = 0; k < N; k++)
      C[i][j] += A[i][k] * B[k][j];
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Working with Smaller Blocks
●  The solution is to reuse rows of A and columns of B 

while they are still in the cache.

●  A c x c block of C can be calculated from c rows of A 

and c columns of B.

●  Only c*N elements of A and c*N elements of B are used 

in this loop (each used c times).
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for(i = i_0; i < i_0 + c; i++)
  for(j = j_0; j < j_0 + c; j++)
    for(k = 0; k < N; k++)
      C[i][j] += A[i][k] * B[k][j];



Matrix-Multiply Blocks

X =
A B Ci i

j j

X =
A B Ci0 i0

j0 j0
Each element of C is computed from a row of A and a column of B.

Each cxc block of C is computed from a cxN block of A and a Nxc block of B.

c

c c

c
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Blocking
●  To compute each block of C, we need to set our loops for 

computing a single block of C inside some outer loops.

●  The blocking transformation reorders computations so 

that all computations that use one portion (i.e., block) of

data are computed before moving on to the next portion.

●  How is c set?  Should we really call the min function?
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for(i_0 = 0; i_0 < N; i_0 += c)
  for(j_0 = 0; j_0 < N; j_0 += c)
    for(i = i_0; i < min(i_0 + c, N); i++)
      for(j = j_0; j < min(j_0 + c, N); j++)
        for(k = 0; k < N; k++)
          C[i][j] += A[i][k] * B[k][j];



Exploiting Locality
●  Focus attention on inner loops.

●  Maximize spatial locality by reading data objects 

sequentially (in storage order).

●  Maximize temporal locality by using a data object as 

often (and as soon) as possible once it has been read.

●  Miss rates are only one factor that determines the 

performance of your program.  
● total number of memory references is important

● may be necessary to trade total # refs for cache misses
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