CS 4400

Computer Systems

LECTURE 13

More on caches

Writing cache-friendly code

Review

Why is memory organized as a hierarchy?

What 1s cache memory and how 1is 1t organized?

What 1s a cache hit/miss?

What are some policies for replacement on a cache miss?

What are the 3 categories of cache misses and when does

each occur?

CS 4400—Lecture 13 2

Clicker Question

If you have ResponseCard clicker, channel is 41.

If you are using ResponseWare, session id is CS1400U.

Consider a 4-way set associative cache with 1024 total

bytes and 32-byte blocks. To what cache set does the item
at address OXx457A map?

CLICK your one-digit answer:

CS 4400—Lecture 13 3

Write-Hit Policy

What happens when the CPU writes data at address x?

If x 1s 1n the cache, 1t 1s a write-hit.

On a write-hit, main memory may be updated at the time
of the hit (write-through) or only when the cache block 1s

evicted from the cache (write-back).
What are the consequences of each policy?

Which policy requires a dirty bit?

CS 4400—Lecture 13 4

Write-Miss Policy

If x 1s not 1n the cache, 1t 1s a write-miss.

Fetch-on-write (or write-allocate): Word at x 1s written to
cache and the other words 1n block are fetched from

main memory. Why?

Write-around: Word at x 1s written directly to main

memory. What happens next time x 1s required?

Write-validate: Word at x 1s written to cache and the

other words 1n block are marked as invalid.

CS 4400—Lecture 13 5

Types of Caches

Caches can hold

 only instructions (i-caches),
e only data (d-caches),

 or both instructions and data (unified caches)

Typical desktop systems have an L1 i1-cache and an L1
d-cache on chip, and an L2 unified cache off chip.

What 1s the advantage of separate 1-cache and d-cache?
What 1s the advantage of a unified cache?

CS 4400—Lecture 13

Cache Performance Metrics

Miss rate—fraction of memory references that miss

e # of misses / total # of references

Hit rate—fraction of memory references that hit

e # of hits / total # of references OR 1 — miss rate

Hit time—time to deliver a word from cache to CPU
e includes set selection, frame (or line) 1d, word selection

e typically 1-2 cycles for L1 caches

Miss penalty—additional time required because of a miss
e penalty for L1 misses (served from L2) is typically 5-10 cycles
 penalty for L2 (served from main memory) typically 25-100

CS 4400—Lecture 13 7

Impact of Size

e Larger cache capacity
e PRO: increases hit rate

 CON: increases the hit time and expense

e Larger block size
e PRO: can increase hit rate (by exploiting spatial locality)
e (CON: decreases the number of cache frames (which can hurt
the hit rate 1f temporal locality outweighs spatial)
e CON: increases the miss penalty (larger transfer time)

 typical compromise: B =4 to 8 words

CS 4400—Lecture 13

Impact of Associativity

» Higher associativity (larger values of E)
 PRO: decreases cache's vulnerability to thrashing due to

conflict misses

e (CON: increases the hit time (more tag comparisons and
additional LRU state bits)

e CON: increases the miss penalty (increases complexity of

choosing which cache frame to evict)

e Essentially a trade-off between hit time and miss penalty.

 typically direct-mapped L1 and £ =2 or 4 for L2 1s favored

e but, no hard and fast rules

CS 4400—Lecture 13 9

Writing Cache-Friendly Code

1. Make the common case fast.

e Programs often spend most of their time in a few core functions

which spend their time in a few loops. Focus on these loops.

2. Minimize the number of cache misses in each inner loop.

* Assuming that all other things are equal (such as total number of

memory references), loops with better miss rates run faster.

int sumvec(int v[N) {
int i, sum= O;

for(i =0; I <N 1++)
sum += v[i];

return sum

}

CS 4400—Lecture 13

* compiler can cache i and sumin the
register file

* stride-1 reference pattern 1s good
for spatial locality

*1f B=16, 3 out of 4 references will hit

(best possible with cold cache)

Exercise: Cache-Friendly Code

struct {
| Nt X;
I nt vy;
} grid[16][16];

int total x = 0, total y = 0O
int 1, |;

for(i = 0 i < 16: i++)
for(j = 0; j < 16; j++)
total x += grid{i][j].x:
fo < 16; i ++)

0; j < 16; |++)
Ly +=grid[i][]].vV;

I
e

e Assume a DM cache with
B=16, C=1024, 5=64.

e Array gr | d requires 2048
bytes, why?

e The cache can hold only half
of the array.

e Total number of reads?
* Number of misses?

e Miss rate?

e How can the number of misses be reduced?

CS 4400—Lecture 13

11

Clicker Question

struct {
| Nt X;
I nt vy;
} grid[16][16];
int total x = 0, total y = 0O
int 1, j;
for(i = 0; I < 16; | ++)
for(j = 0; jJ < 16; J++) {
total x += grid[j][i].X;
total 'y += grid[j][1].VY;

e Whatif £=2, §=327

CS 4400—Lecture 13

e Assume a DM cache with
B=16, C=1024, 5=64.

* What 1s the miss rate?
CLICK:

A. 12.5%

B. 25%
C. 50%
D. 75%
E. 100%
F

. none of the above

12

Clicker Question

struct {
| Nt X;
I nt vy;
} grid[16][16];
int total x = 0, total y = 0O
int i, J;
for(i = 0; I < 16; | ++)
for(j = 0; jJ < 16; J++) {
total x += r|d[|][j] X;
total y += gr|d[|][J] Y,

e What if C=2048, $=128?

CS 4400—Lecture 13

e Assume a DM cache with
B=16, C=1024, 5=64.

* What 1s the miss rate?
CLICK:

A. 12.5%

B. 25%
C. 50%
D. 75%
E. 100%
F

. none of the above

13

Clicker Question

struct {
| Nt X;
I nt vy,
} grid[16][16];

Int total x = 0,
int i, J;

0; j <16; |+
x += grid[i][j].y;
11i].

= 0; i < 16; i++)
|
| y += gr|d[|

total y = 0O;

e What if B=32, §=327?

CS 4400—Lecture 13

e Assume a DM cache with
B=16, C=1024, 5=64.

* What 1s the miss rate?
CLICK:

A. 12.5%

B. 25%
C. 50%
D. 75%
E. 100%
F

. none of the above

14

Memory References in Nested Loops

 When nested loops access memory, successive iterations
often reuse the same word (temporal locality) or use adjacent

words that occupy the same cache block (spatial locality).

 [If 1t 1s the innermost loop whose iterations reuse the same

words (or blocks), there will be many cache hits.

e But if one of the outer loops reuses a cache block, 1t may be

that the inner loops access enough data to displace the block

before its reuse.

CS 4400—Lecture 13 15

Example: Loop Nest

for(i = 0; i < N i++)
for(j = 1; j < M1; j++)
for(k = 0; k < P, k++)

ALTT[j1Tk] = (B[i][j-1]1[k] + B[i][j][k] + B[i][j+1][k]) / 3;

e B[i][] +1] [k] 1s reused 1n the next two iterations of the
j -loop. How?
e But before the next iteration of j -loop, the k-loop accesses

4*P array elements.

* It is possible that these accesses conflict with

B[i][] +1] [k], causing a miss the next time 1t's fetched.

CS 4400—Lecture 13 16

Loop Interchange

for(i =0; i <N i++)
for(k = 0; k < P; k++)
for(j =1; j < M1; j++)
ALTTLIITk] = (Bli][j-1][k] + Bli][j][k] + B[i][J+1][k]) / 3;

* We can interchange the | -loop and the k-loop.

e NowB[i][j][k] andB[i][]-1][K] are highly likely

to be cache hits.

e Is this loop interchange legal? (I.e., does it yield the

same result?)

 Is loop interchange always legal?

CS 4400—Lecture 13 17

Loop-Interchange Legality

for(i = 0; i <N i+4)
for(j =1; j] < M1, j++)
for(k = 0; k < P-1; k++

ALTTLIIKD = (BliT[j-2][k] + B[i][j][k] + B[i][j+1][k]) / 3;
}C[l][J] =) -1][k+1];

* Does interchanging the | -loop and the k-loop

decrease the number of cache misses?

s interchanging the j -loop and the k-loop legal?

CS 4400—Lecture 13

18

Example: Matrix Multiply

N, 1 ++)
O;] < N J++)
= k < N, k++)
[j] += Ali][k] * B[Kk][]];

e Suppose N=50, each element is a doubl e (8 bytes), and the
cache capacity 1s 16 kilobytes.

 Every reference to B[k] [j] 1n the innermost loop misses.
All other elements of B map to the cache in between its use

and reuse 1n the i -loop and there 1s no spatial locality.

e Will interchanging any of the loops help?

CS 4400—Lecture 13 19

Working with Smaller Blocks

e The solution 1s to reuse rows of A and columns of B

while they are still in the cache.

e A ¢ X ¢ block of Ccan be calculated from ¢ rows of A

and ¢ columns of B.

fo(
fo

|
r(]
fo

'_2/\/_

* Only c¢* N elements of A and ¢* N elements of B are used

in this loop (each used c times).

CS 4400—Lecture 13 20

Matrix-Multiply Blocks

J J

14 X‘B] :‘c ’. L

Each element of C is computed from a row of 4 and a column of B.

iOIA B C Iio
& X -k

Each cXc block of C 1s computed from a ¢XN block of 4 and a NXc block of B.

CS 4400—Lecture 13 21

Blocking

e To compute each block of C, we need to set our loops for

computing a single block of Cinside some outer loops.

for(i1 _ 0 =0; 1_ 0O<N 1 _0 += ¢)
for(j 0 =0;, Jj 0O<N j_0 +=1¢)
for(i =1 _0; I <mn(i_0 +c, N,; |I++)
for(] =]_0;)] <mn(j_0 +c, N J++)
for(k = 0; k < N k++)
Cilly] += Ali]lk] * B[K][]]

e The blocking transformation reorders computations so
that all computations that use one portion (1.€., block) of
data are computed before moving on to the next portion.

 How 1s ¢ set? Should we really call the m n function?

CS 4400—Lecture 13 22

Exploiting Locality
Focus attention on inner loops.

Maximize spatial locality by reading data objects

sequentially (in storage order).

Maximize temporal locality by using a data object as

often (and as soon) as possible once 1t has been read.

Miss rates are only one factor that determines the

performance of your program.
e total number of memory references is important

* may be necessary to trade total # refs for cache misses

CS 4400—Lecture 13

23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

