
CS 4400

Computer Systems

LECTURE 13

More on caches

Writing cache-friendly code

Review

CS 4400—Lecture 13 2

● Why is memory organized as a hierarchy?

● What is cache memory and how is it organized?

● What is a cache hit/miss?

● What are some policies for replacement on a cache miss?

● What are the 3 categories of cache misses and when does

each occur?

Clicker Question

CS 4400—Lecture 13 3

Consider a 4-way set associative cache with 1024 total

bytes and 32-byte blocks. To what cache set does the item

at address 0x457A map?

CLICK your one-digit answer.

If you have ResponseCard clicker, channel is 41.

If you are using ResponseWare, session id is CS1400U.

Write-Hit Policy

CS 4400—Lecture 13 4

● What happens when the CPU writes data at address x?

● If x is in the cache, it is a write-hit.

● On a write-hit, main memory may be updated at the time

of the hit (write-through) or only when the cache block is

evicted from the cache (write-back).

● What are the consequences of each policy?

● Which policy requires a dirty bit?

Write-Miss Policy

● If x is not in the cache, it is a write-miss.

● Fetch-on-write (or write-allocate): Word at x is written to

cache and the other words in block are fetched from

main memory. Why?

● Write-around: Word at x is written directly to main

memory. What happens next time x is required?

● Write-validate: Word at x is written to cache and the

other words in block are marked as invalid.

CS 4400—Lecture 13 5

Types of Caches

● Caches can hold
● only instructions (i-caches),

● only data (d-caches),

● or both instructions and data (unified caches)

● Typical desktop systems have an L1 i-cache and an L1

d-cache on chip, and an L2 unified cache off chip.

● What is the advantage of separate i-cache and d-cache?

● What is the advantage of a unified cache?

CS 4400—Lecture 13 6

Cache Performance Metrics
● Miss rate—fraction of memory references that miss

● # of misses / total # of references

● Hit rate—fraction of memory references that hit
● # of hits / total # of references OR 1 – miss rate

● Hit time—time to deliver a word from cache to CPU
● includes set selection, frame (or line) id, word selection

● typically 1-2 cycles for L1 caches

● Miss penalty—additional time required because of a miss
● penalty for L1 misses (served from L2) is typically 5-10 cycles

● penalty for L2 (served from main memory) typically 25-100

CS 4400—Lecture 13 7

Impact of Size

● Larger cache capacity
● PRO: increases hit rate

● CON: increases the hit time and expense

● Larger block size
● PRO: can increase hit rate (by exploiting spatial locality)

● CON: decreases the number of cache frames (which can hurt

 the hit rate if temporal locality outweighs spatial)

● CON: increases the miss penalty (larger transfer time)

● typical compromise: B = 4 to 8 words

CS 4400—Lecture 13 8

Impact of Associativity
● Higher associativity (larger values of E)

● PRO: decreases cache's vulnerability to thrashing due to

 conflict misses

● CON: increases the hit time (more tag comparisons and

 additional LRU state bits)

● CON: increases the miss penalty (increases complexity of

 choosing which cache frame to evict)

● Essentially a trade-off between hit time and miss penalty.
● typically direct-mapped L1 and E = 2 or 4 for L2 is favored

● but, no hard and fast rules

CS 4400—Lecture 13 9

Writing Cache-Friendly Code
1. Make the common case fast.

● Programs often spend most of their time in a few core functions

which spend their time in a few loops. Focus on these loops.

2. Minimize the number of cache misses in each inner loop.
● Assuming that all other things are equal (such as total number of

memory references), loops with better miss rates run faster.

* compiler can cache i and sum in the

 register file

* stride-1 reference pattern is good

 for spatial locality

* if B=16, 3 out of 4 references will hit

 (best possible with cold cache)CS 4400—Lecture 13 10

int sumvec(int v[N]) {
 int i, sum = 0;

 for(i = 0; i < N; i++)
 sum += v[i];

 return sum;
}

Exercise: Cache-Friendly Code

CS 4400—Lecture 13 11

struct {
 int x;
 int y;
} grid[16][16];

int total_x = 0, total_y = 0;
int i, j;

for(i = 0; i < 16; i++)
 for(j = 0; j < 16; j++)
 total_x += grid[i][j].x;

for(i = 0; i < 16; i++)
 for(j = 0; j < 16; j++)
 total_y += grid[i][j].y;

● Assume a DM cache with
 B=16, C=1024, S=64.

● Array grid requires 2048
 bytes, why?

● The cache can hold only half
 of the array.

● Total number of reads?

● Number of misses?

● Miss rate?

● How can the number of misses be reduced?

Clicker Question

CS 4400—Lecture 13 12

struct {
 int x;
 int y;
} grid[16][16];

int total_x = 0, total_y = 0;
int i, j;

for(i = 0; i < 16; i++)
 for(j = 0; j < 16; j++) {
 total_x += grid[j][i].x;
 total_y += grid[j][i].y;
 }

● Assume a DM cache with
 B=16, C=1024, S=64.

● What is the miss rate?

CLICK:

A. 12.5%

B. 25%

C. 50%

D. 75%

E. 100%

F. none of the above

● What if E=2, S=32?

Clicker Question

CS 4400—Lecture 13 13

struct {
 int x;
 int y;
} grid[16][16];

int total_x = 0, total_y = 0;
int i, j;

for(i = 0; i < 16; i++)
 for(j = 0; j < 16; j++) {
 total_x += grid[i][j].x;
 total_y += grid[i][j].y;
 }

● Assume a DM cache with
 B=16, C=1024, S=64.

● What is the miss rate?

CLICK:

A. 12.5%

B. 25%

C. 50%

D. 75%

E. 100%

F. none of the above

● What if C=2048, S=128?

Clicker Question

CS 4400—Lecture 13 14

struct {
 int x;
 int y;
} grid[16][16];

int total_x = 0, total_y = 0;
int i, j;

for(i = 0; i < 16; i++)
 for(j = 0; j < 16; j++) {
 total_x += grid[i][j].y;
 total_y += grid[i][j].x;
 }

● Assume a DM cache with
 B=16, C=1024, S=64.

● What is the miss rate?

CLICK:

A. 12.5%

B. 25%

C. 50%

D. 75%

E. 100%

F. none of the above

● What if B=32, S=32?

Memory References in Nested Loops

● When nested loops access memory, successive iterations

often reuse the same word (temporal locality) or use adjacent

words that occupy the same cache block (spatial locality).

● If it is the innermost loop whose iterations reuse the same

words (or blocks), there will be many cache hits.

● But if one of the outer loops reuses a cache block, it may be

that the inner loops access enough data to displace the block

before its reuse.

CS 4400—Lecture 13 15

Example: Loop Nest

● B[i][j+1][k] is reused in the next two iterations of the

j-loop. How?

● But before the next iteration of j-loop, the k-loop accesses

4*P array elements.

● It is possible that these accesses conflict with

B[i][j+1][k], causing a miss the next time it's fetched.

for(i = 0; i < N; i++)
 for(j = 1; j < M-1; j++)
 for(k = 0; k < P; k++)
 A[i][j][k] = (B[i][j-1][k] + B[i][j][k] + B[i][j+1][k]) / 3;

CS 4400—Lecture 13 16

Loop Interchange

● We can interchange the j-loop and the k-loop.

● Now B[i][j][k] and B[i][j-1][k] are highly likely

to be cache hits.

● Is this loop interchange legal? (I.e., does it yield the

same result?)

● Is loop interchange always legal?
CS 4400—Lecture 13 17

for(i = 0; i < N; i++)
 for(k = 0; k < P; k++)
 for(j = 1; j < M-1; j++)
 A[i][j][k] = (B[i][j-1][k] + B[i][j][k] + B[i][j+1][k]) / 3;

Loop-Interchange Legality

● Does interchanging the j-loop and the k-loop

decrease the number of cache misses?

● Is interchanging the j-loop and the k-loop legal?

CS 4400—Lecture 13 18

for(i = 0; i < N; i++)
 for(j = 1; j < M-1; j++)
 for(k = 0; k < P-1; k++) {
 A[i][j][k] = (B[i][j-1][k] + B[i][j][k] + B[i][j+1][k]) / 3;
 C[i][j] = C[j-1][k+1];
 }

Example: Matrix Multiply

● Suppose N=50, each element is a double (8 bytes), and the

cache capacity is 16 kilobytes.

● Every reference to B[k][j] in the innermost loop misses.

All other elements of B map to the cache in between its use

and reuse in the i-loop and there is no spatial locality.

● Will interchanging any of the loops help?

for(i = 0; i < N; i++)
 for(j = 0; j < N; j++)
 for(k = 0; k < N; k++)
 C[i][j] += A[i][k] * B[k][j];

CS 4400—Lecture 13 19

Working with Smaller Blocks
● The solution is to reuse rows of A and columns of B

while they are still in the cache.

● A c x c block of C can be calculated from c rows of A

and c columns of B.

● Only c*N elements of A and c*N elements of B are used

in this loop (each used c times).
CS 4400—Lecture 13 20

for(i = i_0; i < i_0 + c; i++)
 for(j = j_0; j < j_0 + c; j++)
 for(k = 0; k < N; k++)
 C[i][j] += A[i][k] * B[k][j];

Matrix-Multiply Blocks

X =
A B Ci i

j j

X =
A B Ci0 i0

j0 j0
Each element of C is computed from a row of A and a column of B.

Each cxc block of C is computed from a cxN block of A and a Nxc block of B.

c

c c

c

CS 4400—Lecture 13 21

Blocking
● To compute each block of C, we need to set our loops for

computing a single block of C inside some outer loops.

● The blocking transformation reorders computations so

that all computations that use one portion (i.e., block) of

data are computed before moving on to the next portion.

● How is c set? Should we really call the min function?
CS 4400—Lecture 13 22

for(i_0 = 0; i_0 < N; i_0 += c)
 for(j_0 = 0; j_0 < N; j_0 += c)
 for(i = i_0; i < min(i_0 + c, N); i++)
 for(j = j_0; j < min(j_0 + c, N); j++)
 for(k = 0; k < N; k++)
 C[i][j] += A[i][k] * B[k][j];

Exploiting Locality
● Focus attention on inner loops.

● Maximize spatial locality by reading data objects

sequentially (in storage order).

● Maximize temporal locality by using a data object as

often (and as soon) as possible once it has been read.

● Miss rates are only one factor that determines the

performance of your program.
● total number of memory references is important

● may be necessary to trade total # refs for cache misses

CS 4400—Lecture 13 23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

