
CS 4400

Computer Systems

LECTURE 12

The memory hierarchy

Locality

Cache memory

● Up to this point, our model of the memory system has

been overly simple.
● Memory is a linear array of bytes.

● The CPU accesses each location in constant amount of time.

● In practice, the memory system is a hierarchy of storage

devices with different capacities, costs, and access times.

● Why do we care?
● If we understand how data moves up and down the hierarchy, we can

write programs whose data is stored higher in hierarchy.

● Our programs must have good locality.

Memory Model

CS 4400—Lecture 12 2

The Memory Hierarchy

DISK MEMORY

MAIN MEMORY
(DRAM)

CACHE
(SRAM)

REGISTERS

size

in
cr

ea
sin

g
co

st
decreasing speed

CS 4400—Lecture 12 3

● Two varieties of random-access memory (RAM)
● Static—used for on-and off-chip caches (fast, expensive)

● Dynamic—used for main memory

● Typically, a desktop will have only a few megabytes of

SRAM and thousands of megabytes of DRAM.

● SRAM cells have lower densities than DRAM cells

(hence more expensive and consume more power).

● DRAM cells lose charge within 10-100 ms.
● retention time is long compared to a clock cycle (ns)

● memory system must refresh every bit of memory

Storage Technologies

CS 4400—Lecture 12 4

● DRAMs are organized as 2-d arrays.
● row and column addresses are broadcast separately

● increases access time

● DRAMs and SRAMs are volatile—they lose their

information if the supply voltage is turned off.

● Nonvolatile memories are called read-only memory

(ROM), even though some types can be written to.

● Disks hold huge amounts of data, but reading is slow.
● disk: 10-100 GB, milliseconds

● RAM: 100-1000 MB, ≤ nanoseconds

Storage Technologies

CS 4400—Lecture 12 5

Locality
● Well-written programs tend to access items that are

“near” other recently-accessed items.
● This principle of locality has enormous impact on the design and

performance of hardware and software systems.

● Temporal locality—accessing recently-referenced data.

● Spatial locality—accessing data with memory addresses

near that of recently-referenced data.

● A program has good locality of reference if it can reuse

data while it is still in the upper levels of memory.
CS 4400—Lecture 12 6

Exercise: Locality

● Does the reference to sum have good

 locality? If so, what kind(s)?

● Does the reference to v have good

 locality? If so, what kind(s)?

int sumvec(int v[N]) {
 int i, sum = 0;

 for(i = 0; i < N; i++)
 sum += v[i];

 return sum;
}

int sumarrayrows(int a[M][N]) {
 int i, j, sum = 0;

 for(j = 0; j < N; j++)
 for(i = 0; i < M; i++)
 sum += a[i][j];

 return sum;
}

● Does the reference to a have

 good locality? If so, what kind(s)?

● What if we interchange the i- and

 j-loops?

CS 4400—Lecture 12 7

Cache Memory

● Caches are small fast memories that hold blocks of the

most recently accessed instructions and data.

● When the processor requires the datum at memory

address x, it first looks in the cache.
● If x is in the cache, a cache hit occurs.

● If x is not in the cache, a cache miss occurs. The processor

fetches x from main memory, placing a copy of x in the cache.

● Placing x in the cache may mean displacing another

datum from the cache.

CS 4400—Lecture 12 8

Cache Organization

. . .
..

.

CACHE:

MEMORY ADDRESS:

memory block offset

log2 B bits

blocksize B

a cache block

● The binary expansion of a

memory address is divided into

a memory block address and an

offset within the block.

● The cache blocksize B indicates

how many contiguous bytes of

memory are copied to cache.

CS 4400—Lecture 12 9

 10

Cache Organization

. . .
..

.

CACHE:

MEMORY ADDRESS:

cache set offset

log2 B bits

blocksize B

a cache block
● A memory address is

further divided into a

cache set and a tag.

● The number of cache

sets S indicates how

many sets are in the

entire cache.

● What is E?
tag

log2 S bits

a cache set

number
of cache

sets S

associativity E

 11

Cache Organization

. . .
..

.

CACHE:

MEMORY ADDRESS:

cache set offset

log2 B bits

blocksize B

a cache block

● The capacity of the

entire cache is

C = E * B * S.

● Why is the organization

of the cache so

seemingly complex?

tag

log2 S bits

a cache set

number
of cache

sets S

associativity E

Mapping Memory to Cache

● A cache contains C/B cache lines, and each line may

 be empty or may by occupied by a memory block.

● No two cache lines may contain the same memory

 block. Why?

● A cache set is a collection of E lines that a particular

memory block may occupy in cache.

● The tag disambiguates memory blocks within the same

cache set.

CS 4400—Lecture 12 12

Cache Associativity

direct-mapped
E=1, S=8

2-way associative
E=2, S=4

4-way associative
E=4, S=2

fully associative
E=8, S=1

CS 4400—Lecture 12 13

Cache-Replacement Policy

● On a cache miss, the replacement policy selects which

frame in a cache set to update with the new memory

block. Optimal policy?

● Random: Choose randomly which block to replace.

● First-in first-out (FIFO): Choose to replace the block

that has resided in the cache set the longest.

● Least-recently used (LRU): Choose to replace the block

that has been unused the longest.

CS 4400—Lecture 12 14

Cache-Miss Categories
1. A compulsory (or cold) miss occurs on the very first access

to a memory block. Why? Possible to avoid?

2. A capacity miss occurs when accessing a block that

previously resided in cache, but was replaced because the

cache cannot hold all of the data needed to execute a

program. Possible to avoid?

3. A conflict miss occurs when accessing a block that

previously resided in cache, but was replaced because too

many blocks map to the same cache set. Possible to avoid?
CS 4400—Lecture 12 15

Cache-Miss Categories

● A capacity miss in an LRU set-associative cache with

capacity C is also a miss in an LRU fully-associative

cache with capacity C.

● A conflict miss in an LRU set-associative cache with

capacity C is a hit in an LRU fully-associative cache

with capacity C.

● Why wouldn't we make all caches fully-associative, to

avoid conflict misses?

CS 4400—Lecture 12 16

Clicker Question

CS 4400—Lecture 12 17

Consider a direct-mapped cache with 512 total bytes and

16-byte blocks. How many cache sets are there?

A. 8 sets

B. 16 sets

C. 32 sets

D. 64 sets

E. There is not information to determine the number of sets.

F. None of the above

If you have ResponseCard clicker, channel is 41.

If you are using ResponseWare, session id is CS1400U.

Clicker Question

CS 4400—Lecture 12 18

Consider a fully-associative cache with 512 total bytes and

16-byte blocks. How many cache sets are there?

A. 8 sets

B. 16 sets

C. 32 sets

D. 64 sets

E. There is not information to determine the number of sets.

F. None of the above

Exercise: Cache Parameters
C – cache capacity (total number of bytes)
B – cache block size
E – cache associativity (number of blocks per set)
S – number of cache sets
m – number of main memory address bits
t – number of tag bits (m – s – b)
s – number of set index bits (log

2
S)

b – number of block offset bits (log
2
B)

What are S, t, s, and b?

● m = 32, C = 1024, B = 4, E = 1

● m = 32, C = 1024, B = 8, E = 4

● m = 32, C = 1024, B = 32, E = 32

cache set offsettag

s bt

m

CS 4400—Lecture 12 19

Clicker Question

CS 4400—Lecture 12 20

Consider a 4-way set-associative cache with 512 total

bytes and 16-byte blocks. Which of the following

addresses of memory blocks map to cache set 5?

A. 0x0836

B. 0x0845

C. 0x0877

D. 0x0900

E. Two or more of the above

F. None of the above

Example: DM Cache

E=1, B=16, C=32, S=2
sizeof(float) is 4, x starts at address 0, y starts at address 32

element addr set miss? element addr set miss?
x[0] 0 0 cold y[0] 32 0 cold
x[1] 4 0 conflict y[1] 36 0 conflict
x[2] 8 0 conflict y[2] 40 0 conflict
x[3] 12 0 conflict y[3] 44 0 conflict
x[4] 16 1 cold y[4] 48 1 cold
x[5] 20 1 conflict y[5] 52 1 conflict
x[6] 24 1 conflict y[6] 56 1 conflict
x[7] 28 1 conflict y[7] 60 1 conflict

float dotprod(float x[8], float y[8]) {
 float sum = 0.0;
 int i;

 for(i = 0; i < 8; i++)
 sum += x[i] + y[i];

 return sum;
}

“Thrashing” occurs—
the cache is repeatedly
loading and evicting
the same sets of blocks.

How can thrashing be
prevented?

Exercise: Associative Cache
● E=2, B=4, C=64, S=8, m=13

● Memory accesses are to 1-byte words.

● Which bits (12 to 0) are used to determine the cache block offset?

cache set index? cache tag?

● Suppose address 0x0E34 is referenced. Hit or miss?

● Reference to 0x0DD5? Reference to 0x1FE4?

LINE (or FRAME) 1

set tag valid byte0 byte1 byte2 byte3
0 09 1 86 30 3F 10
1 45 1 60 4F E0 23
2 EB 0 -- -- -- --
3 06 0 -- -- -- --
4 C7 1 06 78 07 C5
5 71 1 0B DE 18 4B
6 45 1 A0 B7 26 2D
7 46 0 -- -- -- --

LINE (or FRAME) 2

set tag valid byte0 byte1 byte2 byte3
0 00 0 -- -- -- --
1 38 1 00 BC 0B 37
2 0B 0 -- -- -- --
3 32 1 12 08 7B AD
4 05 1 40 67 C2 3B
5 6E 0 -- -- -- --
6 F0 0 -- -- -- --
7 DE 1 12 C0 88 37

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

