
CS 4400
Computer Systems

LECTURE 11

Machine-dependent optimizations

Branch prediction

Profiling and improving performance

Recall: Running Example
/* most recent version of “combine” */
void combine4(vec_ptr v, data_t* dest) {
 int i;
 int length = vec_length(v);
 data_t* data = get_vec_start(v);
 data_t acc = IDENT;

 for(i = 0; i < length; i++)
 acc = acc OPER data[i];
 *dest = acc;
}

CPEs int float-pt

+ * + F * D *

combine4 -O1 2.00 3.00 3.00 4.00 5.00

CS 4400—Lecture 11 2

For our superscalar,
out-of-order machine:

latency issue
 int, + 1 0.33
 int, * 3 1
 float, + 3 1
 float, * 4 1
 double, * 5 1

Can we further reduce the CPEs?

Integer Addition
/* most recent version of “combine” */
void combine4(vec_ptr v, data_t* dest) {
 int i;
 int length = vec_length(v);
 data_t* data = get_vec_start(v);
 data_t acc = 0;

 for(i = 0; i < length; i++)
 acc = acc + data[i];
 *dest = acc;
}

How many instructions per iteration?
How many operate on the data?

L:
acc = acc + M[data + 4i]
i = i + 1
compare i, length

 jump to L if i < length

CS 4400—Lecture 11

2.0 CPEs

load

add

incr

cmp

jg

iacc

iacc

Example: Loop Unrolling
void combine5(vec_ptr v, data_t* dest) {
 int i;
 int length = vec_length(v);
 data_t* data = get_vec_start(v);
 data_t acc = 0;
 int limit = length – 2; /* specific to 3 */

 /* combine 3 elements at a time */
 for(i = 0; i < limit; i+=3)
 acc = acc + data[i] + data[i+1] + data[i+2];

 /* finish any remaining elements */
 for(; i < length; i++)
 acc = acc + data[i];

 *dest = acc;
}

CPEs int float-pt

+ * + F * D *

combine4 2.00 3.00 3.00 4.00 5.00
combine5 x2 2.00 1.50 3.00 4.00 5.00
combine5 x3 1.00 1.00 3.00 4.00 5.00

Reduction in loop
overhead is critical in
achieving CPE that
matches integer
addition latency.

For integer
multiplication, the
compiler is
automatically applying
reassociation (more
later).

Why no improvement
for floating-point?

Effects of Unrolling x3

load

add

incr

cmp

jg

iacc

iacc

load

add

load

add

int, +:
each add has 1-cycle latency
add cannot be issued until the

previous add is complete
3-cycle critical path / 3 elements
1.0 CPE

float, +:
each add has 3-cycle latency
add cannot be issued until the

previous add is complete
9-cycle critical path / 3 elements
3.0 CPE

 A functional unit is a subsystem of the CPU with a

specific purpose.
● integer add, integer mult, float add, float mult, load, store

 After unrolling, our example code is limited by the

latency of the functional units (for all types and ops).

 However, some of the functional units are pipelined.
● They can start a new operation before the previous is finished.

 Code like our example cannot take advantage of this

capability and causes the processor to stall. Why?

Parallelism

CS 4400—Lecture 11 6

Loop Splitting
/* unroll by 2, 2-way parallelism */
void combine6(vec_ptr v, data_t* dest) {
 int length = vec_length(v);
 int limit = length-1;
 data_t* data = get_vec_start(v);
 data_t acc0 = IDENT;
 data_t acc1 = IDENT;
 int i;

 /* combine 2 elements at a time */
 for(i = 0; i < limit; i+=2) {
 acc0 = acc0 OPER data[i];
 acc1 = acc1 OPER data[i+1];
 }

 /* finish any remaining elements */
 for(; i < length; i++)
 acc0 = acc0 OPER data[i];

 *dest = acc0 OPER acc1;
}

AKA

“iteration splitting”

Split the set of

combining operations

into multiple parts

and combine the results

at the end.

When will this preserve

the semantics of the

original code?
CS 4400—Lecture 11 7

 As seen in the text, all CPE approach 1.0 for k-way loop unrolling

and k-way loop parallelism.

 For integers, combine6 will give the same results as for all

previous versions (even when overflow occurs).

 For floats, combine6 may give different results due to rounding

and underflow.
● Won't happen in general, and big performance gain may outweigh risk.

Example: Loop Splitting
int float-pt

+ * + F * D *

combine4 2.00 3.00 3.00 4.00 5.00

combine5 unroll x2 2.00 1.50 3.00 4.00 5.00

combine6 unroll x2,
spilt x2

1.50 1.50 1.50 2.00 2.50

Effects of Unrolling x2, Splitting x2

load

add
incr

iacc0

load

add

acc1

data[0]

data[1]

load

add
incr

load
data[2]

data[3]

. . .

iacc0 acc1

add

float, +:
3-cycle critical path / 2 elements
1.5 CPE

Reassociation Transformation
/* change associativity of combining ops */
void combine7(vec_ptr v, data_t* dest) {
 int length = vec_length(v);
 int limit = length-1;
 data_t* data = get_vec_start(v);
 data_t acc = IDENT;
 int i;

 /* combine 2 elements at a time */
 for(i = 0; i < limit; i+=2) {
 acc = acc OPER (data[i] OPER data[i+1]);
 }

 /* finish any remaining elements */
 for(; i < length; i++)
 acc = acc OPER data[i];

 *dest = acc;
} Regular unrolling x2, combine5:

acc = (acc OPER data[i]) OPER data[i+1];

CS 4400—Lecture 11 10

 Again, as seen in the text, all CPE approach 1.0 for k-way loop

unrolling and reassociation.

 The results for D * are likely due to a measurement error (expected

to be 2.50).

 Why isn't integer addition the expected 1.0 when unrolling x2?

Example: Reassociation
int float-pt

+ * + F * D *

combine4 2.00 3.00 3.00 4.00 5.00

combine5 unroll x2 2.00 1.50 3.00 4.00 5.00

combine6 unroll x2,
spilt x2

1.50 1.50 1.50 2.00 2.50

combine7 unroll x2,
reassociate

2.00 1.51 1.50 2.00 2.97

CS 4400—Lecture 11 11

Effects of Unrolling x2, Reassociate

load

iacc

data[0]

data[1]

data[2]

data[3]

. . .

float, +:
3-cycle critical path / 2 elements
1.5 CPE

load

add

load

incr

load

add

incr

add

add

 Modern processors work well ahead of the currently

executing instructions.
● fetching and decoding new instructions from memory

● works well so long as the instructions follow a simple sequence

 Upon encountering a branch, the processor must guess

which way to go.
● speculative execution—the processor begins to fetch/decode

instructions at the predicted branch target

● avoids modifying actual register and memory locations until

the actual outcome of the branch is known

Branch Prediction

CS 4400—Lecture 11 13

 If the prediction is correct, the processor “commits” to

the results of the speculative execution and continues.

 If the prediction is wrong, the processor discards all of

the speculatively-executed results and restarts fetching

and decoding instructions at the correct location.
● incurring a significant branch penalty

 Ideas for predicting branches?

 Our running example was not slowed by branch

penalties. Prediction was correct almost always. Why?

Branch Prediction Outcomes

CS 4400—Lecture 11 14

 A common heuristic is to predict that any branch to a

lower address will be taken, and any branch to a higher

address will not be taken.
● backward branches are used to reenter loops

● forward branches are used for conditional computation

● experiments show this heuristic to be correct 65% of the time

 Predicting all branches as taken has a 60% success rate.

 Much more sophisticated strategies have been devised

and are in use. (Intel Pentium II, III claim 90-95% correct.)

Branch Prediction Heuristics

CS 4400—Lecture 11 15

1. Choose appropriate algorithms and data structures.

Optimizations cannot save a program with poor asymptotic

performance.

2. Avoid optimizations blockers and let the compiler generate

efficient code.

Eliminate excessive function calls and unnecessary memory

references. Move loop-invariant computations.

3. Try low-level optimizations when performance really matters.

 Pointer vs array code, make the most of instruction pipelining.

Performance Improvement

CS 4400—Lecture 11 16

 When working with large programs, even knowing where

to focus your optimization efforts can be difficult.

 Code profilers collect performance data as programs run.
● Instrumentation code is incorporated with the original program

code to detect the running time required by different parts.

 Gnu's code profiler is gprof, which reports
● CPU time spent on each function (relative importance of each)

● number of calls to each function (dynamic behavior of program)

● See text, man, web, etc. for how to use gprof and read output.

Program Profiling

CS 4400—Lecture 11 17

 Amdahl's Law provides insight into the effectiveness of

improving the efficiency of just one part of a system.

 Performance of the overall system depends on 2 things.

 1. The significance of this part in the overall system.

Let a be the fraction of time required by this part.

 2. The improvement in speed for this part.

Let k be the factor of improvement for this part.

T
new

 = (1-a) T
old

 + (a T
old

) / k Speedup = 1 / ((1-a) + a/k)

Amdahl's Law

CS 4400—Lecture 11 18

 Suppose that we have optimized a part of the program

that requires 60% of the program's original running time.
● a = 0.6

 We have improved the performance of this part by a

factor of 3.
● k = 3

 Speedup = 1 / (0.4 + 0.6 / 3) = 1.67

 Even though the improvement of the part is significant,

the net improvement on the program is much less.

Example: Amdahl's Law

CS 4400—Lecture 11 19

 What if k is ∞?
● The program part now takes only a negligible amount of time.

 Speedup
∞
 = 1 / (1-a)

 Example: Let a = 0.6. Net speedup of overall program is

still only 1 / 0.4 = 2.5

 To have a significant impact on the overall program, it is

critical to improve the performance of a very large

fraction of the program.

Special Case of Amdahl's Law

CS 4400—Lecture 11 20

Clicker Question

Suppose you are charged with improving the overall

performance of a system by a factor of 2. However, you

determine that only 60% of the system can be improved.

By what factor k must you improve this part to meet the

overall goal? CLICK your one-digit answer.

If you have ResponseCard clicker, channel is 41.

If you are using ResponseWare, session id is CS1400U.

CS 4400—Lecture 11 21

T
new

 = (1-a) T
old

 + (a T
old

) / k Speedup = 1 / ((1-a) + a/k)

 Much can be done by the programmer to assist an optimizing

compiler in generating efficient code.

 Some optimizations require a deeper look the assembly code

generated and how the computation is being performed.

 The programmer has little or no control over the branch structure

generated by the compiler or the processor's prediction strategy.

 For large programs, focus on the parts that consume the most

execution time (using a code profiler).

 After the break: How the memory hierarchy affects program

performance and Lab 4—challenges you to make code run faster.

Summary: Optimization

CS 4400—Lecture 11 22

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

