
Writing Functions in Scheme

Suppose we want a function ct which takes a list of symbols
and returns the number of symbols in the list

(ct ’(a b c)) →→ 3

(ct ’()) →→ 0

(ct ’(x y z w t)) →→ 5

How can we write this function?

Writing Functions in Scheme

Answer #1: Have the instructor write it

;; ct : <list-of-sym> -> <num>
;; (ct ’()) →→ 0
;; (ct ’(a b c)) →→ 3
(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

Checking My Answer: Empty List

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(ct ’())

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [(null? ’()) 0]
 [else (+ 1 (ct (cdr ’())))])

Checking My Answer: Empty List

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [(null? ’()) 0]
 [else (+ 1 (ct (cdr ’())))])

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [#t 0]
 [else (+ 1 (ct (cdr ’())))])

1-4

Checking My Answer: Empty List

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [#t 0]
 [else (+ 1 (ct (cdr ’())))])

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

0

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(ct ’(a b c))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [(null? ’(a b c)) 0]
 [else (+ 1 (ct (cdr ’(a b c))))])

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [(null? ’(a b c)) 0]
 [else (+ 1 (ct (cdr ’(a b c))))])

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [#f 0]
 [else (+ 1 (ct (cdr ’(a b c))))])

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

 (cond
 [#f 0]
 [else (+ 1 (ct (cdr ’(a b c))))])

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1 (ct (cdr ’(a b c))))

5-8

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1 (ct (cdr ’(a b c))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (ct ’(b c)))

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (ct ’(b c)))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (cond

 [(null? ’(b c)) 0]
 [else (+ 1 (ct (cdr ’(b c))))]))

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (cond

 [(null? ’(b c)) 0]
 [else (+ 1 (ct (cdr ’(b c))))]))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (cond

 [#f 0]
 [else (+ 1 (ct (cdr ’(b c))))]))

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (cond

 [#f 0]
 [else (+ 1 (ct (cdr ’(b c))))]))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (ct (cdr ’(b c)))))

9-12

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (ct (cdr ’(b c)))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (ct ’(c))))

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (ct ’(c))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (cond
 [(null? ’(c)) 0]
 [else (+ 1 (ct (cdr ’(c))))])))

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (cond
 [(null? ’(c)) 0]
 [else (+ 1 (ct (cdr ’(c))))])))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (cond
 [#f 0]
 [else (+ 1 (ct (cdr ’(c))))])))

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (cond
 [#f 0]
 [else (+ 1 (ct (cdr ’(c))))])))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (ct (cdr ’(c))))))

13-16

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (ct (cdr ’(c))))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (ct ’()))))

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (ct ’()))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (cond

 [(null? ’()) 0]
 [else (+ 1 (ct (cdr ’())))]))))

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (cond

 [(null? ’()) 0]
 [else (+ 1 (ct (cdr ’())))]))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (cond

 [#t 0]
 [else (+ 1 (ct (cdr ’())))]))))

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 (cond

 [#t 0]
 [else (+ 1 (ct (cdr ’())))]))))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 0)))

17-20

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 (+ 1
 0)))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 1))

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 (+ 1

 1))

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 2)

Checking My Answer: List of 3 Symbols

(define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

(+ 1
 2)

 → (define (ct l)
 (cond
 [(null? l) 0]
 [else (+ 1 (ct (cdr l)))]))

3

Writing Functions in Scheme: Answer #2

Answer #2: Use the general design recipe

Locate or write a data definition

Write a contract

Write examples

Create a template that follows the shape of the data definition

Convert the template to the final function

Run examples as tests

21-25

Writing Functions in Scheme: Answer #2

Answer #2: Use the general design recipe

Locate or write a data definition

Write a contract

Write examples

Create a template that follows the shape of the data definition

Convert the template to the final function

Run examples as tests

works 90% of the time

Data Definitions

What is a "list of symbols"?

<list-of-sym> ::= ’()
::= (cons <symbol> <list-of-sym>)

Sometimes the data definition is given, somtimes you have
to create it

Usually include it in your code as a comment

Contracts

A contract is a comment that identifies set of input values and
output values

;; ct: <list-of-sym> -> <num>

All mentioned data sets should have a data definition
somewhere

Examples

Examples (usually in comments at first) help clarify the purpose
of the function

;; (ct ’()) →→ 0
;; (ct ’(a b c)) →→ 3

Make sure that every case in the data definition is covered at
least once

26-34

Template

A template reflects the structure of the input according to the
data definition

<list-of-sym> ::= ’()
::= (cons <symbol> <list-of-sym>)

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

Template

A template reflects the structure of the input according to the
data definition

<list-of-sym> ::= ’()
::= (cons <symbol> <list-of-sym>)

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

Two cases in data definition implies cond with two cond-lines

Template

A template reflects the structure of the input according to the
data definition

<list-of-sym> ::= ’()
::= (cons <symbol> <list-of-sym>)

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

Corresponding predicate for each data case

Template

A template reflects the structure of the input according to the
data definition

<list-of-sym> ::= ’()
::= (cons <symbol> <list-of-sym>)

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

Extract parts in cases with meta-variables

35-38

Template

A template reflects the structure of the input according to the
data definition

<list-of-sym> ::= ’()
::= (cons <symbol> <list-of-sym>)

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

Recursive call for self-references in data definition

Template

A template reflects the structure of the input according to the
data definition

<list-of-sym> ::= ’()
::= (cons <symbol> <list-of-sym>)

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

A template depends only on the input data; it ignores the
function’s purpose

(Nevertheless, generating a template, which is fairly automatic,
usually provides most of the function)

Template to Function

Transform template to function line-by-line

(define (ct l)
 (cond
 [(null? l) ...]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

Template to Function

Transform template to function line-by-line

(define (ct l)
 (cond
 [(null? l) 0]
 [(pair? l) ...(car l)...(ct (cdr l))...]))

39-43

Template to Function

Transform template to function line-by-line

(define (ct l)
 (cond
 [(null? l) 0]
 [(pair? l) (+ 1 (ct (cdr l)))]))

Sometimes, a part of the template isn’t needed

Reminder: Recipe

Locate or write a data definition

Write a contract

Write examples

Create a template that follows the shape of the data definition

Convert the template to the final function

Run examples as tests

Reminder: Template Steps

Create a cond expression with one line for each case in the
data definition

Write down a predicate for each case

For the answer, extract parts in cases with meta-variables

For each self-reference in the data definition, add a recursive
call

Shape of template shape == Shape of data definition

More Examples

(more examples in class)

44-47

Generalized Recipe

Locate or write data definitions

Write contracts

Write examples

Create a template that follows the shape of the data
definition, one for each data definition

Convert the templates to the final functions

Run examples as tests

48-49

