Writing Functions in Scheme

® Suppose we want a function ct which takes a list of symbols
and returns the number of symbols in the list

(ct’(@abc)) - - 3
(ct’()) - -0

(ct’'xyzwt)) - -5

How can we write this function?

Writing Functions in Scheme

® Answer #1: Have the instructor write it

;; ct: <list-of-sym> -> <num>
p (ct’()) - -0
;; (ct’(abc)) - - 3
(define (ct 1)
(cond
[(null? 1) 0]
[else (+ 1 (ct (cdr D)D)

Checking My Answer: Empty List

(define (ct 1) — (define (ct)
(cond (cond
[(null? 1) 0] [(null? 1) 0]

[else (+ 1 (ct (cdr D)) [else (+ 1 (ct (cdr D))

(ct’() (cond
[(null? " () O]
[else (+ 1 (ct (cdr *())))])

Checking My Answer: Empty List

(define (ct 1) — (define (ct 1)
(cond (cond
[(null? 1) O] [(null? 1) 0]

[else (+ 1 (ct (cdr)))]) [else (+ 1 (ct (cdr D))

(cond (cond

[(null? *() 0] [#t O]
[else (+ 1 (ct (cdr *())))]) [else (+ 1 (ct (cdr *())))])

1-4

Checking My Answer: Empty List

(define (ct 1) - (define (ct 1)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr D)) [else (+ 1 (ct (cdr D))
(cond 0
[#t O]

[else (+ 1 (ct (cdr 'O

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct)
(cond (cond
[(null? 1) O] [(null2 1) O]

[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D)
(ct’(abc)) (cond

[(null? ’(a b c)) O]

[else (+ 1 (ct (cdr'(ab)

Checking My Answer: List of 3 Symbols

(define (ct) - (define (ct)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr))])
(cond (cond
[(null? "(ab c)) 0] [#f O]

[else (+ 1 (ct (cdr (@b c)))D [else (+ 1 (ct (cdr (@b)]

Checking My Answer: List of 3 Symbols

(define (ct 1) — (define (ctl)
(cond (cond
[(null? 1) 0] [(null? 1) O]
[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D)
(cond (+ 1 (ct (cdr’'(@ab c))))
[#f 0]

[else (+ 1 (ct (cdr (@b)

5-8

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct)
(cond (cond
[(null? 1) 0] [(null? 1) O]

[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D)

(+ 1 (ct (cdr'(abc)))) +1
(ct’(bc))

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct)
(cond (cond
[(null2 1) O] [(null? 1) O]

[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D)
+1 (+1
(ct’(bc)) (cond
[(null? ’(b c)) O]
[else (+ 1 (ct (cdr (b c)))D)

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct)
(cond (cond
[(null? 1) 0] [(null? 1) 0]
[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D)
(+1 (+1
(cond (cond
[(null? *(b c)) 0] [#f O]

[else (+ 1 (ct (cdr (b c)))D)

[else (+ 1 (ct (cdr (b c)N)D)

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct 1)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D)
(+1 (+1
(cond (+1
[#f O] (ct (cdr (b c)))))

[else (+ 1 (ct (cdr "(b c))D)

9-12

Checking My Answer: List of 3 Symbols Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct) (define (ct 1) - (define (ct)
(cond (cond (cond (cond
[(null? 1) O] [(null? 1) 0] [(null? 1) O] [(null? 1) 0]
[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D)
(+1 +1 (+1 +1
(+1 (+1 (+1 (+1
(ct (cdr ’(b c))))) (ct’(c))) (ct’(c))) (cond

[(null? *(c)) 0]
[else (+ 1 (ct (cdr '(c))))

Checking My Answer: List of 3 Symbols Checking My Answer: List of 3 Symbols
(define (ct) — (define (ctl) (define (ct 1) — (define (ct 1)
(cond (cond (cond (cond
[(null? 1) O] [(null? 1) O] [(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D)
(+1 (+1 (+1 (+1
(+1 (+1 (+1 (+1
(cond (cond (cond (+1
[(null?*(c)) O] [#f 0] [#f 0] (ct (cdr’(c)))))
[else (+ 1 (ct (cdr "(c)))) [else (+ 1 (ct (cdr "(c)))) [else (+ 1 (ct (cdr "(c))))

13-16

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct)
(cond (cond
[(null? 1) 0] [(null? 1) O]

[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D)
(+1 +1
(+1 (+1
(+1 +1
(ct (cdr ’(c)))))) (ct’0N)

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct)
(cond (cond
[(null? 1) O] [(null2 1) O]

[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D)
(+1 +1
(+1 (+1
(+1 +1
(GN0))) (cond
[(null? *()) 0]
[else (+ 1 (ct (cdr "())D)))

Checking My Answer: List of 3 Symbols

Checking My Answer: List of 3 Symbols

(define (ct 1) — (define (ctl)
(cond (cond
[(null? 1) O] [(null? 1) O]
[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D)
(+1 (+1
(+1 (+1
(+1 (+1
(cond (cond
[(null? *()) O] [#t 0]

[else (+ 1 (ct (cdr "))

lelse (+ 1 (ct (cdr " 0NNN))

(define (ct I)
(cond
[(null? 1) 0]
[else (+ 1 (ct (cdr D)D)

(+1
(+1
(+1
(cond
[#t 0]

lelse (+ 1 (ct (cdr " 0NN))

—

(define (ct 1)
(cond
[(null? 1) O]
[else (+ 1 (ct (cdr))]D)

(+1
(+1
(+1
0)))

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct)
(cond (cond
[(null? 1) 0] [(null? 1) O]
[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr D)D)
(+1 +1
(+1 (+1
(+1 1))
0)))

Checking My Answer: List of 3 Symbols

(define (ct 1) - (define (ct 1)
(cond (cond
[(null? 1) O] [(null? 1) 0]
[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr))])
(+1 (+1
(+1 2)
1))

Checking My Answer: List of 3 Symbols

(define (ct 1) — (define (ctl)
(cond (cond
[(null? 1) 0] [(null? 1) O]
[else (+ 1 (ct (cdr D)D) [else (+ 1 (ct (cdr))D)
(+1 3
2)

Writing Functions in Scheme: Answer #2

Answer #2: Use the general design recipe

® | ocate or write a data definition

® Write a contract

® \Write examples

® Create a template that follows the shape of the data definition
® Convert the template to the final function

® Run examples as tests

21-25

Writing Functions in Scheme: Answer #2

Answer #2: Use the general design recipe

® | ocate or write a data definition

® \Write a contract

® \Write examples

® Create a template that follows the shape of the data definition
® Convert the template to the final function

® Run examples as tests

works 90% of the time

Data Definitions

What is a "list of symbols"?

<list-of-sym>

0

(cons <symbol> <list-of-sym>)

® Sometimes the data definition is given, somtimes you have
to create it

® Usually include it in your code as a comment

Contracts

A contract is a comment that identifies set of input values and
output values

;; ct: <list-of-sym> -> <num>

® All mentioned data sets should have a data definition
somewhere

Examples

Examples (usually in comments at first) help clarify the purpose
of the function

5, (ct’()) -0
, (ct’(@abc)) - -3

® Make sure that every case in the data definition is covered at
least once

26-34

Template

A template reflects the structure of the input according to the
data definition

<list-of-sym>

0

(cons <symbol> <list-of-sym>)

(define (ct I)
(cond
[(null?2 1) ...]

[(pair? 1) ...(car |)...(ct (cdr 1))...]))

Template

A template reflects the structure of the input according to the
data definition

<list-of-sym>

0

(cons <symbol> <list-of-sym>)

(define (ct I)
(cond
[(null?2 1) ...]

[(pair? 1) ...(car |)...(ct (cdr 1))...]))

® Two cases in data definition implies cond with two cond-lines

Template

A template reflects the structure of the input according to the
data definition

<list-of-sym>

()

(cons <symbol> <list-of-sym>)

(define (ct I)
(cond
[(null?2 1) ...]

[(pair? 1) ...(car I)...(ct (cdr 1))...]))

® Corresponding predicate for each data case

Template

A template reflects the structure of the input according to the
data definition

<list-of-sym>

()

(cons <symbol> <list-of-sym>)

(define (ct I)
(cond
[(nul 1?2 1) ...]

[(pair? 1) ...(car |)...(ct (cdr 1))...]))

® Extract parts in cases with meta-variables

35-38

Template

A template reflects the structure of the input according to the
data definition

<list-of-sym>

0

(cons <symbol> <list-of-sym>)

(define (ct I)
(cond
[(null?2 1) ...]

[(pair? 1) ...(car |)...(ct (cdr 1))...]))

® Recursive call for self-references in data definition

Template

A template reflects the structure of the input according to the
data definition

<list-of-sym>

0

(cons <symbol> <list-of-sym>)

(define (ct I)
(cond
[(null?2 1) ...]

[(pair? 1) ...(car |)...(ct (cdr 1))...]))

® A template depends only on the input data; it ignores the
function’s purpose

(Nevertheless, generating a template, which is fairly automatic,
usually provides most of the function)

Template to Function

Transform template to function line-by-line

(define (ct I)
(cond
[(null?2 1) ...]

[(pair? |) ...(car I)...(ct (cdr 1))...]))

Template to Function

Transform template to function line-by-line

(define (ct I)
(cond
[(null? 1) 0]
[(pair? 1) ...(car |)...(ct (cdr 1))...]))

39-43

Template to Function Reminder: Recipe

Transform template to function line-by-line
® | ocate or write a data definition

(define (ct I)
(cond ® \Write a contract

[(nul1? 1) 0]

[(pait? 1) (+ 1 (et (cdr 1)))])) ® Write examples

® Create a template that follows the shape of the data definition
® Sometimes, a part of the template isn't needed ® Convert the template to the final function

® Run examples as tests

Reminder: Template Steps More Examples
® Create a cond expression with one line for each case in the
data definition
® \Write down a predicate for each case
® For the answer, extract parts in cases with meta-variables
(more examples in class)
® For each self-reference in the data definition, add a recursive

call

Shape of template shape == Shape of data definition

44-47

Generalized Recipe

® | ocate or write data definitions
® \\/rite contracts
® \Write examples

® Create a template that follows the shape of the data
definition, one for each data definition

® Convert the templates to the final functions

® Run examples as tests

48-49

