Assigning to a Variable

What is the result of this program?

let f = proc(x) setx =1

DO

Assigning to a Variable

inlety =0
in {(fy);
y }
IsitOor 1?
let f = proc(x)setx =1
inlety =0
in {(fy);
y }
Assigning to a Variable Assigning to a Variable
x|set x = 1/ wp|fle] ix(set x = 1/¢)

let f = proc(x) setx =1
inlety =0
in {(fy);
y }

let f = proc(x) setx =1

inlety =0
in{(fy)
y

1-4

Assigning to a Variable

let f = proc(x)setx =1

Assigning to a Variable

let f = proc(x) set x =1

inlety =0 inlety =0
in {(fy); in {(fy);
y } y
Assigning to a Variable Assigning to a Variable
flo| »xiset x = 10
\

let f = proc(x) set x =1
inlety =0
in {(fy);
y }

let f = proc(x) setx =1
inlety =0
in {(fy);
y

So the answer is 0

5-8

Variables in C++

void f(int x) {
X = 1;

}

int main() {
int y = 0;
f(y);
return vy;

}

The result above is 0, too

Variables in C++

void f(int& x) {
X = 1;

}

int main() {
int y =0;
f(y);
return y;

}

But the result above is 1

Variables in C++

void f(int& x) {
X = 1;

}

int main() {
int' y =0;
f(y);
return vy;

}

This example shows call-by-reference.

The previous example showed call-by-value.

Assignment and Call-by-Reference

O

Adding call-by-reference
parameters to our language

let f = proc(&x) setx =1

inlety =0
in{(fy)
y }

9-12

Assignment and Call-by-Reference

DO,

1
|&x|set X = 1|0|

let f = proc(&x) setx =1

inlety =0
in {(fy);
y }

Assignment and Call-by-Reference

7
mp/fle| »&x|set x = 1/

let f = proc(&x) setx =1

inlety =0
in {(fy);
y }

Assignment and Call-by-Reference

let f = proc(&x) setx =1

inlety =0
in {(fy);
y }

Assignment and Call-by-Reference

b
E J

The pointer from one

x[e]

environment frame to another is
questionable, because frames
are supposed to point to values

let f = proc(&x) set x =1
inlety =0
in {(fy);

13-16

Assignment and Call-by-Reference

o,
wpixje|

let f = proc(&x) set x =1

inlety =0
in {(fy);
y }

Assignment and Call-by-Reference

let f = proc(&x) setx =1

inlety =0
in {(fy)
y }

Interpreter Changes

Same as before:
® Expressed values: Number + Proc

® Denoted values: Ref(Expressed Value)

The difference is that application doesn’t always create a hew
location for a new variable binding

=> Separate /ocation creation from environment extension

Assignment and Call-by-Reference

The old way
let x =10
y=12
in +(x,y)

17-21

Assignment and Call-by-Reference Call-by-Reference

Q »O
x|®
Dy[®
Do the previous evaluation the
The new way new way...
let x =10 let f = proc(&x) setx =1
y=12 inlety =0
in +(x,y) in{(fy)
y }
Call-by-Reference Call-by-Reference
DO, n

N |
|&x|set X = 1|0| » u &x|set X = 1|0|

let f = proc(&x) setx =1 let f = proc(&x) setx =1
inlety =0 inlety =0
in {(fy); in {(fy);
y } y }

22-25

Call-by-Reference Call-by-Reference

This time, the new environment
frame points to a location box,
which is consistent with other

let f = proc(&x) setx =1

inlety =0
in {(fy);
y }

frames

let f = proc(&x) setx =1

inlety =0
in {(fy)
y }

Call-by-Reference

let f = proc(&x) set x =1
inlety =0
in {(fy);
y }

Call-by-Reference

let f = proc(&x) setx =1

inlety =0
in{(fy)
y }

26-29

Call-by-Reference with Non-variables

If call-by-reference argument is
not a variable...

let f = proc(&x) setx =1

inlety =0
in {(f 0);
y }

Call-by-Reference with Non-variables

... create a location

let f = proc(&x) setx =1

inlety =0
in {(f 0);
y }

Interpreter Changes

® Add call-by-reference arguments (indicated by &)

New var datatype, with cbv- var and cbr - var variants
® Create explicit locations for variables

| ocation : expval -> location
| ocation-val : location -> expval
| ocation-set! : location expval -> void

® Change variable lookup to de-reference locations
® Change set to work on locations

® Add eval - f un-rands and change appl y- pr oc

& versus *in C++

void f(int* x) {
X = 1;

}

int main() {
int y = 0;
f(&y);
return y;

}

® This is back to call-by-value, but with a reference as a value

® To study this form of call, we can add explicit references tgg 34
our language, too

Call-by-Value with References

DO,

|x|setref(x, 1)|0|

let f = proc(x) setref(x, 1)
inlety =0
in { (f ref(y));
y }

Call-by-Value with References

«7¢7,,,,,,,
1
wpflof >le| >x[setref(x, 1)®)

let f = proc(x) setref(x, 1)
inlety =0
in { (f ref(y));
y }

Call-by-Value with References

let f = proc(x) setref(x, 1)
inlety =0
in { (f ref(y));
y }

Call-by-Value with References

let f = proc(x) setref(x, 1)
inlety =0
in { (f ref(y));
y }

35-38

Call-by-Value with References

let f = proc(x) setref(x, 1)
inlety =0
in {(f ref(y));
y }

Call-by-Value with References

let f = proc(x) setref(x, 1)
inlety =0
in { (f ref(y));
y }

Call-by-Value with References

let f = proc(x) setref(x, 1)
inlety =0
in { (f ref(y));
y }

Call-by-Value with References

let f = proc(x) setref(x, 1)
inlety =0
in { (f ref(y));
y }

39-42

Interpreter Changes for References

Revised language:
® Expressed vals: Number + Proc + Ref(Expressed Val)

® Denoted vals: Ref(Expressed Val)

Interpreter changes:
® Add reference values

® Addref formand setref primitive

Lazy Evaluation of Function Arguments

let f = proc(x)0
in (f +(1,+(2,+(3,+(4,+(5,6))))))

The computed 21 is never used.

What if we were lazy about computing function arguments (in
case they aren’t used)?

Lazy Evaluation of Function Arguments

One way to laziness:
let f = proc(xthunk)O
in (f proc()+(1,+(2,+(3,+(4,+(5,6))))))

let f = proc(xthunk)-((xthunk), 7)
in (f proc()+(1,+(2,+(3,+(4,+(5,6))))))

By using proc to delay evaluation, we can avoid unnecessary

computation.

How about making the language compute function arguments

lazily in all applications?

Evaluation with Lazy Arguments

O

let f = proc(x)0
in (f +(1,2))

43-51

Evaluation with Lazy Arguments

O,
»;»I»- o] >[x[ofe

let f = proc(x)0
in (f +(1,2))

Evaluation with Lazy Arguments

Application creates a new kind
of green box, with two slots: a
thunk

let f = proc(x)0
in (f +(1,2))

Evaluation with Lazy Arguments

let f = proc(x)0
in (f +(1,2)

Evaluation with Lazy Arguments

[x[of >{o] >+(1,2)[e]

The resultis 0

let f = proc(x)0
in (f +(1,2))

52-55

Evaluation with Lazy Arguments

»O

let f = proc(x)-(x,1)
in (f +(1,2))

Evaluation with Lazy Arguments

let f = proc(x)-(x,1)
in (f +(1,2))

Evaluation with Lazy Arguments

let f = proc(x)-(x,1)
in (f +(1,2))

Evaluation with Lazy Arguments

mpix[e] >{e] >+(1,2)fe]

lookup of x...

let f = proc(x)-(x,1)
in (f +(1,2))

56-59

Evaluation with Lazy Arguments

... forces evaluation of the thunk

let f = proc(x)-(x,1)
in (f +(1,2))

Evaluation with Lazy Arguments

mpix[e] >[e] >+(1,2)fe]

so 3 is the value of x

let f = proc(x)-(x,1)
in (f +(1,2))

Evaluation with Lazy Arguments

The resultis 2

let f = proc(x)-(x,1)
in (f +(1,2)

Evaluation with Lazy Arguments

O

Lazy expression that needs its

environment...

let f = proc(x)-(x,1)
inlety =7
in (f+(1,y))

Evaluation with Lazy Arguments

let f = proc(x)-(x,1)
inlety =7
in (f +(1.y))

Evaluation with Lazy Arguments

let f = proc(x)-(x,1)
inlety =7
in (f +(1,y))

Evaluation with Lazy Arguments

let f = proc(x)-(x,1)
inlety =7
in (f+(1,y))

Evaluation with Lazy Arguments

\

vl
\ M
mpixe] o] > (Ly)le)

Evaluation of x forces the
thunk...

let f = proc(x)-(x,1)
inlety =7
in (f+(1,y))

64-67

Evaluation with Lazy Arguments

x|of o) >+(1y)® o o
Triggering evaluation with the
thunk's environment, not the

current one

let f = proc(x)-(x,1)
inlety=7
in (f +(1,y))

Evaluation with Lazy Arguments

(The result will be 7)

let f = proc(x)-(x,1)
inlety =7
in (f +(1,y))

Evaluation with Lazy Arguments

20

What if the right-hand side for y
is an expression, instead of a
value?

let f = proc(x)-(x,1)
inlety =+(3,4)
in (f+(1y))

Evaluation with Lazy Arguments

< —
wf[e] >1e] >x|-(x, 1)

let f = proc(x)-(x,1)
inlety =+(3,4)
in (f +(1,y))

68-71

Evaluation with Lazy Arguments

f 1)l
Dyfel o] @A)l

Added thunk for the value of y

let f = proc(x)-(x,1)
inlety =+(3,4)
in (f+(1,y))

Evaluation with Lazy Arguments

+Ly)l®!
Another thunk for the argument
of f
let f = proc(x)-(x,1)
inlety =+(3,4)
in (f +(1,y))

Evaluation with Lazy Arguments

Evaluation of x forces a thunk...

let f = proc(x)-(x,1)
inlety =+(3,4)
in (f+(1,y))

Evaluation with Lazy Arguments

x.1)®

A

\)
x[e >e] eyl

which, in turn, forces another
thunk...

let f = proc(x)-(x,1)
inlety =+(3,4)
in (f +(1,y))

72-75

Evaluation with Lazy Arguments

\ \\7 o
x[o] >{e] >+(Ly)le

and so on (to get 7)

let f = proc(x)-(x,1)
inlety =+(3,4)
in (f +(1,y))

Implementing Lazy Evaluation

Interpreter changes:
® Change eval - f un- r ands to create thunks

® Change variable lookup to force thunk evaluation

(Implement in DrScheme)

Call-by-Name and Call-by-Need

The lazy strategy we just implemented is call-by-name
® Advantage: unneeded arguments are not computed

® Disadvantage: needed arguments may be computed many

times

let f = proc(x)+(x,+(x,x))
in (f +(1,+(2,+(3,+(4,+(5,6))))))

Best of both worlds: call-by-need

® Evaluates each lazy expression once, then remembers the

result

Evaluation with Lazy Arguments

O

Start as before...

let f = proc(x)-(x,x)
in (f +(1,2))

76-81

Evaluation with Lazy Arguments

let f = proc(x)-(x,x)
in (f +(1,2))

Evaluation with Lazy Arguments

let f = proc(x)-(x,x)
in (f +(1,2))

Evaluation with Lazy Arguments

lookup of x...

let f = proc(x)-(x,x)
in (f +(1,2)

Evaluation with Lazy Arguments

[x[of >{o] >+(1,2)[e]

... forces evaluation of the thunk

toget3

let f = proc(x)-(x,x)
in (f +(1,2))

Evaluation with Lazy Arguments

so change x to 3 --- which is the
essence of call-by-need

let f = proc(x)-(x,x)
in (f +(1,2))

Evaluation with Lazy Arguments

lookup of x again gets 3

let f = proc(x)-(x,x)
in (f +(1,2))

Evaluation with Lazy Arguments

(The result is 0)

let f = proc(&x) setx =1

inlety =0
in {(fy);
y }

Implementing Call-by-Need

Interpreter changes:

® Change variable lookup to replace thunks in locations with
their values

(Implement in DrScheme)

86-89

Calling Convention Terminology

® Call-by-name and call-by-need = /azy evaluation

® Call-by-value = eager evaluation

Call-by-reference can augment either...

... but the combination of reference and laziness is difficult to
reason about

Popular Calling-Convention Choices

® Most languages are call-by-value

© C, C++, Pascal, Scheme, Java, ML, Smalltalk...
® Some provide call-by-reference

© C++, Pascal
® A few are call-by-need

© Haskell

® Practically no languages are call-by-name

Popularity of Laziness

Why don’t more languages provide lazy evaluation?

® Disadvantage: evaluation order is not obvious

letx=0 f=..
inlety =set x=1
Z =set x=2
in{(fyz);x}

Popularity of Laziness

Why do some languages provide lazy evaluation?

® Evaluation order does not matter if the language has no set
form

® Such languages are called purely functional

© Note: call-by-reference is meaningless in a purely
functional language

® A language with set can be called imperative

90-95

Laziness and Eagerness

Even in a purely functional language, lazy and eager evaluation
can produce different results

let f = proc(x)0
in (f [loop forever))

® Eager answer: none

® | azy answer: 0

96-97

