
Assigning to a Variable

What is the result of this program?

let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

Is it 0 or 1?

Assigning to a Variable

let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

Assigning to a Variable

x set x = 1

let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

Assigning to a Variable

f x set x = 1

let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

1-4

Assigning to a Variable

f x set x = 1

y 0

let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

Assigning to a Variable

f x set x = 1

y 0

x 0

let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

Assigning to a Variable

f x set x = 1

y 0

x 1

let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

Assigning to a Variable

f x set x = 1

y 0

x 1

So the answer is 0

let f = proc(x) set x = 1
 in let y = 0
 in { (f y);
 y }

5-8

Variables in C++

void f(int x) {
 x = 1;
}

int main() {
 int y = 0;
 f(y);
 return y;
}

The result above is 0, too

Variables in C++

void f(int& x) {
 x = 1;
}

int main() {
 int y = 0;
 f(y);
 return y;
}

But the result above is 1

Variables in C++

void f(int& x) {
 x = 1;
}

int main() {
 int y = 0;
 f(y);
 return y;
}

This example shows call-by-reference.

The previous example showed call-by-value.

Assignment and Call-by-Reference

Adding call-by-reference
parameters to our language

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

9-12

Assignment and Call-by-Reference

&x set x = 1

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

Assignment and Call-by-Reference

f &x set x = 1

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

Assignment and Call-by-Reference

f &x set x = 1

y 0

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

Assignment and Call-by-Reference

f &x set x = 1

y 0

x
?

The pointer from one
environment frame to another is
questionable, because frames
are supposed to point to values

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

13-16

Assignment and Call-by-Reference

f &x set x = 1

y 1

x
?

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

Assignment and Call-by-Reference

f &x set x = 1

y 1

x
?

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

Interpreter Changes

Same as before:

Expressed values: Number + Proc

Denoted values: Ref(Expressed Value)

The difference is that application doesn’t always create a new
location for a new variable binding

=> Separate location creation from environment extension

Assignment and Call-by-Reference

x 10
y 12

The old way

let x = 10
 y = 12
 in +(x,y)

17-21

Assignment and Call-by-Reference

x
y

10
12

The new way

let x = 10
 y = 12
 in +(x,y)

Call-by-Reference

Do the previous evaluation the
new way...

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

Call-by-Reference

&x set x = 1

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

Call-by-Reference

f &x set x = 1

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

22-25

Call-by-Reference

f &x set x = 1

y 0

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

Call-by-Reference

f &x set x = 1

y 0

x This time, the new environment
frame points to a location box,
which is consistent with other
frames

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

Call-by-Reference

f &x set x = 1

y 1

x

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

Call-by-Reference

f &x set x = 1

y 1

x

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

26-29

Call-by-Reference with Non-variables

f &x set x = 1

y 0

If call-by-reference argument is
not a variable...

let f = proc(&x) set x = 1
 in let y = 0
 in { (f 0);
 y }

Call-by-Reference with Non-variables

f &x set x = 1

y 0

x 0

... create a location

let f = proc(&x) set x = 1
 in let y = 0
 in { (f 0);
 y }

Interpreter Changes

Add call-by-reference arguments (indicated by &)

New var datatype, with cbv-var and cbr-var variants

Create explicit locations for variables

location : expval -> location

location-val : location -> expval

location-set! : location expval -> void

Change variable lookup to de-reference locations

Change set to work on locations

Add eval-fun-rands and change apply-proc

& versus * in C++

void f(int* x) {
 *x = 1;
}

int main() {
 int y = 0;
 f(&y);
 return y;
}

This is back to call-by-value, but with a reference as a value

To study this form of call, we can add explicit references to
our language, too

30-34

Call-by-Value with References

x setref(x, 1)

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

Call-by-Value with References

f x setref(x, 1)

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

Call-by-Value with References

f x setref(x, 1)

y 0

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

Call-by-Value with References

f x setref(x, 1)

y 0

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

35-38

Call-by-Value with References

f x setref(x, 1)

y 0

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

Call-by-Value with References

f x setref(x, 1)

y 0

x

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

Call-by-Value with References

f x setref(x, 1)

y 1

x

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

Call-by-Value with References

f x setref(x, 1)

y 1

x

 let f = proc(x) setref(x, 1)
 in let y = 0
 in { (f ref(y));
 y }

39-42

Interpreter Changes for References

Revised language:

Expressed vals: Number + Proc + Ref(Expressed Val)

Denoted vals: Ref(Expressed Val)

Interpreter changes:

Add reference values

Add ref form and setref primitive

Lazy Evaluation of Function Arguments

let f = proc(x)0
 in (f +(1,+(2,+(3,+(4,+(5,6))))))

The computed 21 is never used.

What if we were lazy about computing function arguments (in
case they aren’t used)?

Lazy Evaluation of Function Arguments

One way to laziness:

let f = proc(xthunk)0
 in (f proc()+(1,+(2,+(3,+(4,+(5,6))))))

let f = proc(xthunk)-((xthunk), 7)
 in (f proc()+(1,+(2,+(3,+(4,+(5,6))))))

By using proc to delay evaluation, we can avoid unnecessary
computation.

How about making the language compute function arguments
lazily in all applications?

Evaluation with Lazy Arguments

let f = proc(x)0
 in (f +(1,2))

43-51

Evaluation with Lazy Arguments

f x 0

let f = proc(x)0
 in (f +(1,2))

Evaluation with Lazy Arguments

f x 0

+(1,2)

Application creates a new kind
of green box, with two slots: a
thunk

let f = proc(x)0
 in (f +(1,2))

Evaluation with Lazy Arguments

f x 0

x +(1,2)

let f = proc(x)0
 in (f +(1,2))

Evaluation with Lazy Arguments

f x 0

x +(1,2)

The result is 0

let f = proc(x)0
 in (f +(1,2))

52-55

Evaluation with Lazy Arguments

let f = proc(x)-(x,1)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,1)

let f = proc(x)-(x,1)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,1)

+(1,2)

let f = proc(x)-(x,1)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,1)

x +(1,2)

lookup of x...

let f = proc(x)-(x,1)
 in (f +(1,2))

56-59

Evaluation with Lazy Arguments

f x -(x,1)

x +(1,2)

... forces evaluation of the thunk

let f = proc(x)-(x,1)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,1)

x +(1,2)

so 3 is the value of x

let f = proc(x)-(x,1)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,1)

x +(1,2)

The result is 2

let f = proc(x)-(x,1)
 in (f +(1,2))

Evaluation with Lazy Arguments

Lazy expression that needs its
environment...

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

60-63

Evaluation with Lazy Arguments

f x -(x,1)

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y 7

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y 7

+(1,y)

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y 7

x +(1,y)

Evaluation of x forces the
thunk...

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

64-67

Evaluation with Lazy Arguments

f x -(x,1)

y 7

x +(1,y)
Triggering evaluation with the
thunk’s environment, not the
current one

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y 7

x +(1,y)

(The result will be 7)

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

Evaluation with Lazy Arguments

What if the right-hand side for y
is an expression, instead of a
value?

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

68-71

Evaluation with Lazy Arguments

f x -(x,1)

y +(3,4)

Added thunk for the value of y

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y +(3,4)

+(1,y)

Another thunk for the argument
of f

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y +(3,4)

x +(1,y)

Evaluation of x forces a thunk...

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y +(3,4)

x +(1,y)

which, in turn, forces another
thunk...

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

72-75

Evaluation with Lazy Arguments

f x -(x,1)

y +(3,4)

x +(1,y)

and so on (to get 7)

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

Implementing Lazy Evaluation

Interpreter changes:

Change eval-fun-rands to create thunks

Change variable lookup to force thunk evaluation

(Implement in DrScheme)

Call-by-Name and Call-by-Need

The lazy strategy we just implemented is call-by-name

Advantage: unneeded arguments are not computed

Disadvantage: needed arguments may be computed many
times

let f = proc(x)+(x,+(x,x))
 in (f +(1,+(2,+(3,+(4,+(5,6))))))

Best of both worlds: call-by-need

Evaluates each lazy expression once, then remembers the
result

Evaluation with Lazy Arguments

Start as before...

let f = proc(x)-(x,x)
 in (f +(1,2))

76-81

Evaluation with Lazy Arguments

f x -(x,x)

let f = proc(x)-(x,x)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,x)

+(1,2)

let f = proc(x)-(x,x)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,x)

x +(1,2)

lookup of x...

let f = proc(x)-(x,x)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,x)

x +(1,2)

... forces evaluation of the thunk
to get 3

let f = proc(x)-(x,x)
 in (f +(1,2))

82-85

Evaluation with Lazy Arguments

f x -(x,x)

x 3

so change x to 3 --- which is the
essence of call-by-need

let f = proc(x)-(x,x)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,x)

x 3

lookup of x again gets 3

let f = proc(x)-(x,x)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,x)

x 3

(The result is 0)

let f = proc(&x) set x = 1
 in let y = 0
 in { (f y);
 y }

Implementing Call-by-Need

Interpreter changes:

Change variable lookup to replace thunks in locations with
their values

(Implement in DrScheme)

86-89

Calling Convention Terminology

Call-by-name and call-by-need = lazy evaluation

Call-by-value = eager evaluation

Call-by-reference can augment either...

... but the combination of reference and laziness is difficult to
reason about

Popular Calling-Convention Choices

Most languages are call-by-value

C, C++, Pascal, Scheme, Java, ML, Smalltalk...

Some provide call-by-reference

C++, Pascal

A few are call-by-need

Haskell

Practically no languages are call-by-name

Popularity of Laziness

Why don’t more languages provide lazy evaluation?

Disadvantage: evaluation order is not obvious

let x = 0 f = ...
 in let y = set x=1
 z = set x=2
 in { (f y z) ; x }

Popularity of Laziness

Why do some languages provide lazy evaluation?

Evaluation order does not matter if the language has no set
form

Such languages are called purely functional

Note: call-by-reference is meaningless in a purely
functional language

A language with set can be called imperative

90-95

Laziness and Eagerness

Even in a purely functional language, lazy and eager evaluation
can produce different results

let f = proc(x)0
 in (f [loop forever])

Eager answer: none

Lazy answer: 0

96-97

