Assignment in Scheme

So far, we have one form of assignment: vector-set!

(let ([v (vector 1 2 3)])
(begin
(vector-set! v 172)

v))

- —

#(1 72 3)

Assignment in Scheme

Scheme actually allows variables to be modified:

(let ([x 2])
(begin
(set! x 73)
X))

- —

73

® Don't write Scheme code like that, except for HW6

® But many languages have assignment, and need it

Assignment in the Book Language

® Add a set expression form:

<expr> 1= set <id>=<expr>

Evaluating with Assignment

Can't write this, since we don't
have begin in our language

let x =10
y=12
in (begin set x = +(x,1)
X)

Evaluating with Assignment

Instead, use a binding for a
dummy variable d to sequence
expressions; initial environment

Is empty

let x =10
y=12

inletd =set x = +(x,1)
in x

Evaluating with Assignment

DO

let x =10
y=12

in letd = set x = +(x,1)
in X

Eval RHS (right-hand side) of
the let expression

Evaluating with Assignment

X|10
D12
Extend the current environment
with x and y, and eval body
let x =10
y =12
in letd =set x = +(x,1)
in X

Evaluating with Assignment

let x =10
y=12
inletd =set x = +(x,1)
in x

Eval RHS of the let expression

8-11

Evaluating with Assignment

X|11
|12
It modifies the x in the current
lexical scope; we define set to
always return 1
let x =10
y=12
inletd=set x =+(x,1)
in x

Evaluating with Assignment

»O

< | X
=
N

\ 4
o]
=

Bind d to the result 1; to eval
the body, x, we look it up in the
environment as usual, and find
11

let x =10
y=12
in letd =set x = +(x,1)
in x

Evaluating with Assignment

»O

< [x
|_\
N

=3
=

» Variables now correspond to
boxes in the environment, not
fixed values

let x =10
y=12
inletd =set x = +(x,1)
in x

Expressed and Denoted Values

<expval> = <num>
= <proc>
<denval> := <reference>

® New datatype:

(defi ne-dat atype reference reference?
(a-ref (pos integer?)
(vec vector?)))

® New function:

appl y-env-ref env sym-> ref

12-15

Assignment and Closures

»O
An example with proc; again,
we start with the empty
environment
let x =10
y=12

in let f = proc(z)+(z,x)
inletd=set x = +(x,1)

Assignment and Closures

»O
Eval RHS of the let expression
let x =10
y=12

in let f = proc(z)+(z,x)
inlet d =set x = +(x,1)

in (f 0) in (f 0)
Assignment and Closures Assignment and Closures
x|10 X|10
mply|12 |12
Extend the current environment Eval RHS of the let
with x and y, and eval body expression...
let x =10 let x =10
y =12 y=12

in let f = proc(z)+(z,x)
inletd =set x =+(x,1)
in (f 0)

inlet f = proc(z)+(z,x)
inlet d =set x = +(x,1)

in (f 0) 16-19

Assignment and Closures

... which creates a closure,
pointing to the current
environment

let x =10
y=12
inlet f =proc(z)+(z,x)
inletd =set x = +(x,1)
in (f 0)

Assignment and Closures

%

X|10
yll2|
a

wfle] >lzi+(zx)e

To finish the let, the

environment is extended with f
bound to the closure; then
evaluate the body

let x =10
y=12
in let f = proc(z)+(z,x)
in letd =set x = +(x,1)

in (f 0)
Assignment and Closures Assignment and Closures
x|10 x|11
y|12| y|12]
A T A T
wfle] zl+(zx)e

Eval RHS of the let
expression...

let x =10
y =12
in let f = proc(z)+(z,x)
inletd=setx=+(x,1)
in (f 0)

o] »izl+zx)le

... which changes the value of
X, then produces 1

let x =10
y=12
in let f = proc(z)+(z,x)
inletd=set x =+(x,1)

in (f 0) 20-23

Assignment and Closures

To eval the body, (f 0), we look
up f in the environment to find a
closure, and evaluate 0 to O

let x =10
y=12
in let f = proc(z)+(z,x)
inletd=set x = +(x,1)
in (f 0)

Assignment and Closures

Extend the closure’s
environment with 0 for z, and
evaluate the closure’s body in
that environment; the result will
be 11

let x =10
y=12
in let f = proc(z)+(z,x)
inletd =set x = +(x,1)
in (f 0)

Assignment and Closures

» By capturing environments,
closures capture variables that

may change

let x =10
y=12
in let f = proc(z)+(z,x)
in letd = set x = +(x,1)
in (f 0)

Assignment and Arguments

O

Another example with proc, but
with the let inside the proc

let f = proc(z)
let x =10
in let d =set x = +(x,2)
in x
in +((f 1), (f 9)) 24-27

Assignment and Arguments

»O

Eval RHS of the let
expression...

let f = proc(z)
let x =10
in let d =set x = +(x,z)
in X
in +((f 1), (f9))

Assignment and Arguments

DO,

1
|z|let x =10inletd =set x = +(x,z) in x|0|

... which creates a closure,
pointing to the current

environment

let f = proc(z)
let x = 10
in let d =set x = +(x,z)
in X
in +((f 1), (f9))

Assignment and Arguments

<———— B
1
» z||et x=10inletd =set x = +(x,z) in x|0|

Bind the closure to f and eval

the body

let f = proc(z)
let x =10
in let d =set x = +(x,2)
in x
in +((f 1), (f9))

Assignment and Arguments

<,,,, B
1
» z|Iet x =10inletd =set x = +(x,z) in x|0|

Evaluate the first operand, (f 1)

let f = proc(z)
let x =10
in let d =set x = +(x,2)
in x
in +((f 1), (f9))

28-31

Assignment and Arguments

<———r -
\ |
\ z||et Xx=10inletd =set x = +(X,2) in x|0|

\
\

wz1]

Take the closure for f, extend
its environment with a binding
for z, and eval the closure’s
body

let f = proc(z)
let x =10
in let d =set x = +(x,z)
in X
in +((f 1), (f 9))

Assignment and Arguments

O, -
\ z||et x=10inletd =set x = +(X,2) in x|0|

nen

Eval the RHS

let f = proc(z)
let x =10
inlet d =set x = +(x,2)
in x
in +((f 1), (f9))

Assignment and Arguments

f——— _
\ 7
flo[>z|let x =10 in let d = set x = +(x,Z) in x|®|

:x|10

\
\

l2]1

Add the binding for x and eval
the inner body

let f = proc(z)
let x =10
in letd = set x = +(x,z)
in x
in +((f 1), (f 9))

Assignment and Arguments

O -
flo] »izllet x = 10 in let d = set x = +(x,2) in x®|

El»

Eval RHS...

let f = proc(z)
let x =10
inletd =set x = +(x,z)
in x
in +((f 1), (f9))

32-35

Assignment and Arguments

t —_—
\

]
\ z||et Xx=10inletd =set x = +(X,2) in x|0|

\
\

l2]1

< S

mpix[11]

... which modifies the value of
X

let f = proc(z)
let x =10
inletd =set x = +(x,z)
in x
in +((f 1), (f9))

Assignment and Arguments

<——~ S
\ z||et x=10inletd =set x = +(X,2) in x|0|

o[
md|1]

Bind d to 1 and evaluate X,
which produces 11

let f = proc(z)
let x =10
in let d =set x = +(x,2)
in x
in +((f 1), (f9))

Assignment and Arguments

<———r -
\ 1
ﬂ z||et x =10in let d = set x = +(x,z) in x|0|

\

\
\

l2]1

First operand is 11; now
evaluate the second operand,
(f9)

let f = proc(z)
let x =10
in let d =set x = +(x,2)
in x
in +((f 1), (f9))

Assignment and Arguments

|
d|1] Again, take the closure for f,
u extend the closure’s
»EQ environment with a binding for

z, and eval the closure’s body

let f = proc(z)
let x = 10
in let d = set x = +(x,z)
in x
in +((f 1), (f9))

36-39

Assignment and Arguments

<

1\

]
ﬂ z||et Xx=10inletd =set x = +(X,2) in x|0|

™\
o\
\ o\

71
:
\ dj1]
Eg Add a binding for x, then eval

» the inner body
let f = proc(z)

let x =10

in let d =set x = +(x,2)

in x
in +((f 1), (f9))

Assignment and Arguments

[T_
dL
E Again the d RHS modifies the
z|9 value of x, but using the new z
» and x
let f = proc(z)
let x =10
inletd=set x = +(x,z)
in x

in +((f 1), (f9))

Assignment and Arguments

O, -
|8 >z|let x =10 in let d = set x = +(x,Z) in x|®|

™\

o\
VoA

B
| o
BE

Bind d to 1 and evaluate X,
» which produces 19

let f = proc(z)
let x =10
in let d = set x = +(x,z)
in x
in +((f 1), (f 9))

Assignment and Arguments

So the operands are 11 and 19;
» The final result is 30

let f = proc(z)
let x =10
in let d =set x = +(x,2)
in x
in +((f 1), (f 9)) 40-43

Assignment and Arguments

1
z||et Xx=10inletd =set x = +(X,2) in x|0|

Eg » Every evaluation of a binding
expression creates a new
df1 variable (box)
let f = proc(z)
let x =10
inlet d = set x = +(x,2)
in X

in +((f 1), (f9))

Assignment and Locals within Procedures

DO

An example with a procedure in
a procedure

let mk = proc(x) proc(z)
let d = set x = +(x,z) in x
in let f = (mk 10)
inletg=(mk 12) in ...

Assignment and Locals within Procedures

20

Eval RHS of the let
expression...

let mk = proc(x) proc(z)
let d = set x = +(x,z) in x
in let f = (mk 10)
inletg=(mk12) in ...

Assignment and Locals within Procedures

DO,

1
|x|proc(z)|et d =set x = +(x,z) in x|0|

... which creates a closure,
pointing to the current
environment

let mk = proc(x) proc(z)
let d = set x = +(x,z) in x
in let f = (mk 10)
inletg=(mk 12) in ...

44-47

Assignment and Locals within Procedures

< e

»|mk|0|—>|x|proc(z)let d=setx =+(X,2) i

0 xe)

To finish the let, the
environment is extended with
mk bound to the closure, then
evaluate the body

let mk = proc(x) proc(z)
let d = set x = +(x,z) in x
in let f = (mk 10)
inletg =(mk 12) in ...

Assignment and Locals within Procedures

< -

»|mk|0|—>|x|proc(z)let d =set x =+(x,z) i

0

Eval RHS, a function call; look
up mkK...

let mk = proc(x) proc(z)
let d = set x = +(x,z) in x
inlet f =(mk 10)
inletg=(mk 12) in ...

Assignment and Locals within Procedures

|
|mIdQ x|proc(z)|et d =set x = +(x,z) in x|0|

Bx|10

It's a closure, so extend the
closure’s environment with 10,
and eval the closure’s body

let mk = proc(x) proc(z)
let d = set x = +(x,z) in x
in let f = (mk 10)
inletg=(mk12) in ...

Assignment and Locals within Procedures

|
|mk1? x|proc(z)|et d =set x = +(x,z) in x|0|

|z|let d =set x = +(x,z) in x|0|

Note that the variable x is in the
closure’s environment

let mk = proc(x) proc(z)
let d =set x = +(x,z) in x
in let f = (mk 10)
inletg=(mk 12) in ...

48-51

Assignment and Locals within Procedures

(,,, —
]
|mldQ x|proc(z)|et d =set x = +(x,z) in x|0|
A

“‘ 7 I
» z||et d = set x = +(x,2) in x|®|

Bind f to the closure, and
evaluate the body

let mk = proc(x) proc(z)
let d = set x = +(X,z) in X
in let f = (mk 10)
inletg =(mk 12) in ...

Assignment and Locals within Procedures

(,,,, —
]
|mkk x|proc(z)|et d =set x = +(x,z) in x|0|
A

| T |

» z||et d = set x = +(x,z) in x|®
E

val' RHS of the let expression,
another call to mk; same as
before...

let mk = proc(x) proc(z)
let d = set x = +(X,2) in x
in let f = (mk 10)
inletg=(mk 12) in ...

Assignment and Locals within Procedures

<

|
Imk|e| >x proc(z)let d = set x = +(x,z) in x|e|
A

[\

z||et d = set x = +(x,z) in x|0| Extend mk’s

env with a new

\
q‘ x and get a
| B closure, this

|
» |g|:|—>|z|let d =set x = +(x,z) in x|0|

let mk = proc(x) proc(z)
let d = set x = +(x,z) in x
in let f = (mk 10)
inletg=(mk 12) in ...

time bound to g

Assignment and Locals within Procedures

|
Imk|e| >x proc(z)let d = set x = +(x,z) in x|
X

\

|\ -

flo/>z/let d = set x = +(x,z) in x|®

z| e set x = +(x,z) in x| | At this point, f
‘q‘ e and g have

|

| private versions

]
W |g/®| >zllet d = set x = +(x,z) in x| of X

let mk = proc(x) proc(z)
let d =set x = +(x,z) in x
inlet f = (mk 10)
inletg =(mk 12) in .. 52.55

Assignment and Locals within Procedures

I
Imk|e| >x|proc(z)let d = set x = +(x,2) in x|®|
A

AY » Closures can
1'\[x]10
N capture

flof >zlet d = set x = +(x,z) in x|| generated

| \ variables,

| effectively

J‘ I getting private
gle| >[z[let d = set x = +(x,2) in x| state

let mk = proc(x) proc(z)
let d = set x = +(x,z) in x
in let f = (mk 10)
inletg=(mk12) in ...

Assignment Summary

® Variables now denote references (a.k.a. locations), not values

® | exical scope still works

56-58

