
Assignment in Scheme

So far, we have one form of assignment: vector-set!

(let ([v (vector 1 2 3)])
 (begin
 (vector-set! v 1 72)
 v))
→→
#(1 72 3)

Assignment in Scheme

Scheme actually allows variables to be modified:

(let ([x 2])
 (begin
 (set! x 73)
 x))
→→
73

Don’t write Scheme code like that, except for HW6

But many languages have assignment, and need it

Assignment in the Book Language

Add a set expression form:

<expr> ::= set <id> = <expr>

Evaluating with Assignment

Can’t write this, since we don’t
have begin in our language

let x = 10
 y = 12
 in (begin set x = +(x,1)
 x)

1-7

Evaluating with Assignment

Instead, use a binding for a
dummy variable d to sequence
expressions; initial environment
is empty

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

Evaluating with Assignment

Eval RHS (right-hand side) of
the let expression

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

Evaluating with Assignment

x 10
y 12

Extend the current environment
with x and y, and eval body

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

Evaluating with Assignment

x 10
y 12

Eval RHS of the let expression

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

8-11

Evaluating with Assignment

x 11
y 12

It modifies the x in the current
lexical scope; we define set to
always return 1

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

Evaluating with Assignment

x 11
y 12

d 1
Bind d to the result 1; to eval
the body, x, we look it up in the
environment as usual, and find
11

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

Evaluating with Assignment

x 11
y 12

d 1

 Variables now correspond to
boxes in the environment, not
fixed values

let x = 10
 y = 12
 in let d = set x = +(x,1)
 in x

Expressed and Denoted Values

<expval> ::= <num>
::= <proc>

<denval> ::= <reference>

New datatype:

(define-datatype reference reference?
 (a-ref (pos integer?)
 (vec vector?)))

New function:

apply-env-ref : env sym -> ref
12-15

Assignment and Closures

An example with proc; again,
we start with the empty
environment

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Assignment and Closures

Eval RHS of the let expression

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Assignment and Closures

x 10
y 12

Extend the current environment
with x and y, and eval body

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Assignment and Closures

x 10
y 12

Eval RHS of the let
expression...

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0) 16-19

Assignment and Closures

x 10
y 12

z +(z,x)

... which creates a closure,
pointing to the current
environment

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Assignment and Closures

x 10
y 12

f z +(z,x)
To finish the let, the
environment is extended with f
bound to the closure; then
evaluate the body

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Assignment and Closures

x 10
y 12

f z +(z,x)

Eval RHS of the let
expression...

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Assignment and Closures

x 11
y 12

f z +(z,x)

... which changes the value of
x, then produces 1

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0) 20-23

Assignment and Closures

x 11
y 12

f z +(z,x)

d 1 To eval the body, (f 0), we look
up f in the environment to find a
closure, and evaluate 0 to 0

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Assignment and Closures

x 11
y 12

f z +(z,x)

d 1

z 0

Extend the closure’s
environment with 0 for z, and
evaluate the closure’s body in
that environment; the result will
be 11

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Assignment and Closures

x 11
y 12

f z +(z,x)

d 1

z 0

 By capturing environments,
closures capture variables that
may change

let x = 10
 y = 12
 in let f = proc(z)+(z,x)
 in let d = set x = +(x,1)
 in (f 0)

Assignment and Arguments

Another example with proc, but
with the let inside the proc

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9)) 24-27

Assignment and Arguments

Eval RHS of the let
expression...

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Assignment and Arguments

z let x = 10 in let d = set x = +(x,z) in x

... which creates a closure,
pointing to the current
environment

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

Bind the closure to f and eval
the body

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

Evaluate the first operand, (f 1)

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9)) 28-31

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1

Take the closure for f, extend
its environment with a binding
for z, and eval the closure’s
body

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1

Eval the RHS

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 10

Add the binding for x and eval
the inner body

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 10

Eval RHS...

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9)) 32-35

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

... which modifies the value of
x

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

Bind d to 1 and evaluate x,
which produces 11

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1
First operand is 11; now
evaluate the second operand,
(f 9)

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9

Again, take the closure for f,
extend the closure’s
environment with a binding for
z, and eval the closure’s body

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9)) 36-39

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 10

Add a binding for x, then eval
the inner body

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 19

Again the d RHS modifies the
value of x, but using the new z
and x

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 19

d 1
Bind d to 1 and evaluate x,
which produces 19

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 19

d 1
So the operands are 11 and 19;
The final result is 30

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9)) 40-43

Assignment and Arguments

f z let x = 10 in let d = set x = +(x,z) in x

z 1
x 11

d 1

z 9
x 19

d 1

 Every evaluation of a binding
expression creates a new
variable (box)

let f = proc(z)
 let x = 10
 in let d = set x = +(x,z)
 in x
 in +((f 1), (f 9))

Assignment and Locals within Procedures

An example with a procedure in
a procedure

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

Assignment and Locals within Procedures

Eval RHS of the let
expression...

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

Assignment and Locals within Procedures

x proc(z)let d = set x = +(x,z) in x

... which creates a closure,
pointing to the current
environment

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

44-47

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

To finish the let, the
environment is extended with
mk bound to the closure, then
evaluate the body

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

Eval RHS, a function call; look
up mk...

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

It’s a closure, so extend the
closure’s environment with 10,
and eval the closure’s body

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

z let d = set x = +(x,z) in x

Note that the variable x is in the
closure’s environment

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

48-51

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x

Bind f to the closure, and
evaluate the body

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x
Eval RHS of the let expression,
another call to mk; same as
before...

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x

x 12

g z let d = set x = +(x,z) in x

Extend mk’s
env with a new
x and get a
closure, this
time bound to g

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x

x 12

g z let d = set x = +(x,z) in x

At this point, f
and g have
private versions
of x

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ... 52-55

Assignment and Locals within Procedures

mk x proc(z)let d = set x = +(x,z) in x

x 10

f z let d = set x = +(x,z) in x

x 12

g z let d = set x = +(x,z) in x

 Closures can
capture
generated
variables,
effectively
getting private
state

let mk = proc(x) proc(z)
 let d = set x = +(x,z) in x
 in let f = (mk 10)
 in let g = (mk 12) in ...

Assignment Summary

Variables now denote references (a.k.a. locations), not values

Lexical scope still works

56-58

