Programming Languages Concepts

This course teaches concepts in two ways:

- By implementing interpreters
- new concept $=>$ extend interpreter
- By using Scheme
- we assume that you don't already know Scheme

Bootstrapping Problem

- We'll learn about languages by writing interpreters in Scheme
- We'll learn about Scheme...
by writing an interpreter...
in Scheme set theory
- More specifically, we'll define Scheme as an extension of algebra

Algebra is a programming language?

Algebra as a Programming Language

- Algebra has a grammar:
$\circ(1+2)$ is a legal expression
$\circ(1++)$ is not a legal expression
- Algebra has rules for evaluation:
- $(1+2)=3$
- $\mathbf{f}(17)=(17+3)=20$ if $f(\mathbf{x})=(\mathbf{x}+3)$

A Grammar for Algebra Programs

The grammar in BNF (Backus-Naur Form; EoPL sec 1.1.2):

```
<prog> ::= <defn>* <expr>
<defn> ::= <id>(<id>) = <expr>
<expr> ::= (<expr>+<expr>)
            ::= (<expr>-<expr>)
            ::= <id>(<expr>)
            ::= <id> | <num>
<id> ::= a variable name: f, x, y, z,\ldots
<num> ::= a number:1,42,17,\ldots
```

- Each meta-variable, such as <prog>, defines a set

Using a BNF Grammar

$$
\begin{aligned}
\text { <expr> } & ::=\text { (<expr>+ <expr>) } \\
& ::=\text { (<expr>-<expr>) } \\
& ::=\text { <id>(<expr>) } \\
& ::=\text { <id> | <num> }
\end{aligned}
$$

- The set <expr> is defined in terms of other sets

$$
\begin{gathered}
1 \in \text { <num> } \\
198 \in \text { <num> }
\end{gathered}
$$

Using a BNF Grammar

```
<expr> ::= (<expr> + <expr>)
    ::= (<expr>-<expr>)
    ::= <id>(<expr>)
    ::= <id> | <num>
```

- To make an example <expr>:
- choose one case in the grammar
- pick an example for each meta-variable
- combine the examples with literal text

Using a BNF Grammar

```
<expr> ::= (<expr> + <expr>)
    ::= (<expr> - <expr>)
    ::= <id>(<expr>)
    ::= <id> | <num>
```

- To make an example <expr>:
- choose one case in the grammar
- pick an example for each meta-variable

$$
7 \in \text { <num> }
$$

- combine the examples with literal text

$$
7 \in<\operatorname{expr}>
$$

Using a BNF Grammar

$$
\begin{aligned}
\text { <expr> } & ::=(<e x p r>+ \text { eexpr>) } \\
& ::=(<e x p r>- \text { eexpr }>) \\
& ::=\text { <id>(<expr>) } \\
& ::=\text { <id> | <num> }
\end{aligned}
$$

- To make an example <expr>:
- choose one case in the grammar
- pick an example for each meta-variable

$$
\mathbf{f} \in<\text { id }>\quad \mathbf{f}(7) \in<e x p r>
$$

- combine the examples with literal text

$$
\mathbf{f}(\mathbf{f}(7)) \in<e x p r>
$$

Using a BNF Grammar

```
<prog> ::= <defn>* <expr>
<defn> ::= <id>(<id>)= <expr>
f(\mathbf{x})=(\mathbf{x}+1)\in<defn>
```

- To make a <prog> pick some number of <defn>s

$$
\begin{aligned}
& \quad(\mathbf{x}+\mathbf{y}) \in<\text { prog }> \\
& \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
& \mathbf{g}(\mathbf{y})=\mathbf{f}((\mathbf{y}-2)) \quad \in<\text { prog }> \\
& \mathbf{g}(7)
\end{aligned}
$$

Demonstrating Set Membership

- We can run the element-generation process in reverse to prove that some item is a member of a set
- Such proofs have a standard tree format:
sub-claim to prove $\quad . . \quad$ sub-claim to prove
claim to prove
- Immediate membership claims serve as leaves on the tree:

$$
7 \in \text { <num }>
$$

Demonstrating Set Membership

- We can run the element-generation process in reverse to prove that some item is a member of a set
- Such proofs have a standard tree format:

$$
\begin{gathered}
\text { sub-claim to prove } \ldots \text { sub-claim to prove } \\
\text { claim to prove }
\end{gathered}
$$

- Other membership claims generate branches in the tree:

$$
\frac{7 \in \text { <num> }}{7 \in \text { expr }>}
$$

Demonstrating Set Membership

- We can run the element-generation process in reverse to prove that some item is a member of a set
- Such proofs have a standard tree format:
sub-claim to prove ... sub-claim to prove claim to prove
- Other membership claims generate branches in the tree:

$$
\frac{\mathbf{f} \in \text { <id }>\quad \frac{7 \in \text { <num> }}{7 \in \text { expr }>}}{\mathbf{f}(7) \in<\operatorname{expr}>}
$$

The proof tree's shape is driven entirely by the grammar

Demonstrating Set Membership: Example

```
    f(7) < <expr>
<expr> ::= (<expr> + <expr>)
    ::= (<expr>-<expr>)
    ::= <id>(<expr>)
    ::= <id> | <num>
```

- Two meta-variables on the left means two sub-trees:
- One for $\mathbf{f} \in<$ id $>$
- One for $7 \in$ <expr>

Demonstrating Set Membership: Example

$$
\begin{gathered}
\frac{\mathbf{f} \in<\text { id }>\quad \frac{7 \in<\text { num }>}{7 \in<\text { expr }>}}{f(7) \in<\text { expr> }} \\
\text { <num> }::=\text { a number: } 1,42,17, \ldots
\end{gathered}
$$

- $7 \in<$ num> is immediate, so the proof is complete
- $\mathbf{f} \in$ <id> is immediate
- $7 \in<e x p r>$ has one meta-variable, so one subtree

Demonstrating Set Membership: Another Example

```
    f(x)=(x+1)
    g(y)=f((y-2)) \in<<prog>
    g(7)
<prog> ::= <defn>* <expr>
```

- Three meta-variables (after expanding *) means three sub-trees:
- One for $f(\mathbf{x})=(\mathbf{x}+1) \in<$ defn $>$
- One for $\mathbf{g}(\mathbf{y})=\mathbf{f}((\mathbf{y}-2)) \in$ <defn>
- One for $\mathbf{g}(7) \in$ <expr>

Demonstrating Set Membership: Example 2

$$
\begin{gathered}
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \in<\text { defn }> \\
<\text { defn }>::=<i d>(<i d>)=<\text { expr }>
\end{gathered}
$$

- Three meta-variables, three sub-trees

Demonstrating Set Membership: Example 2

$$
\begin{aligned}
& \mathbf{g}(\mathbf{y})=\mathbf{f}((\mathbf{y}-2)) \in<\text { defn }> \\
& \mathbf{f (x) = (\mathbf { x } + 1) \in < \text { defn } >} \mathbf{g (7) \in < \text { expr } >} \\
& \hline \mathbf{f (x)}=(\mathbf{x}+1) \\
& \mathbf{g}(\mathbf{y})=\mathbf{f}((\mathbf{y}-2)) \quad \in<\text { prog }> \\
& \mathbf{g}(7)
\end{aligned}
$$

- Each sub-tree can be proved separately
- We'll prove only the first sub-tree for now

Demonstrating Set Membership: Example 2

$$
\begin{array}{ccc}
\mathbf{f} \in<\text { id }> & \mathbf{x} \in<\text { id }> & (\mathbf{x}+1) \in<\text { expr }> \\
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \in<\text { defn }>
\end{array}
$$

- The first two are immediate, the last requires work:

$$
\begin{aligned}
\text { <expr> } & ::=\text { (<expr> + <expr>) } \\
& ::=\text { (<expr>-<expr>) } \\
& ::=\text { <id>(<expr>) } \\
& ::=\text { <id> | <num> }
\end{aligned}
$$

Demonstrating Set Membership: Example 2

Final tree:

$$
f(\mathbf{x})=(\mathbf{x}+1) \in<\text { defn }>
$$

- This was just one of three sub-trees for the original \in <prog> proof...

Algebra as a Programming Language

- Algebra has a grammar:
- $(1+2)$ is a legal expression
- $(1++)$ is not a legal expression
- Algebra has rules for evaluation:
- $(1+2)=3$
- $\mathbf{f}(17)=(17+3)=20$ if $\mathbf{f}(\mathbf{x})=(\mathbf{x}+3)$

Evaluation Function

- An evaluation function, \rightarrow, takes a single evaluation step
- It maps programs to programs:

$$
\begin{array}{lll}
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) & \rightarrow & \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
(2+(7-4)) & & (2+3)
\end{array}
$$

Evaluation Function

- An evaluation function, \rightarrow, takes a single evaluation step
- It maps programs to programs:

$$
\begin{array}{lll}
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) & \rightarrow & \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
\mathbf{g}(\mathbf{y})=(\mathbf{y}-1) & & \mathbf{g}(\mathbf{y})=(\mathbf{y}-1) \\
\mathbf{h}(\mathbf{z})=\mathbf{f}(\mathbf{z}) & & \mathbf{h}(\mathbf{z})=\mathbf{f}(\mathbf{z}) \\
(2+\mathbf{f}(13)) & & (2+(13+1))
\end{array}
$$

Evaluation Function

- Apply \rightarrow repeatedly to obtain a result:

$$
\begin{array}{lll}
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) & \rightarrow & \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
(2+(7-4)) & & (2+3) \\
& & \\
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) & \rightarrow & \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
(2+3) & & 5
\end{array}
$$

Evaluation Function

- The \rightarrow function is defined by a set of pattern-matching rules:

$$
\begin{array}{lll}
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
(2+(7-4)) & \rightarrow & \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
& (2+3)
\end{array}
$$

due to the pattern rule
$\ldots(7-4) \ldots \rightarrow \ldots \ldots$

Evaluation Function

- The \rightarrow function is defined by a set of pattern-matching rules:

$$
\begin{array}{lll}
\mathbf{f}(\mathbf{x})=(\mathbf{x}+1) & \rightarrow & \mathbf{f}(\mathbf{x})=(\mathbf{x}+1) \\
(2+\mathbf{f}(13)) & & (2+(13+1))
\end{array}
$$

due to the pattern rule
$\ldots\langle i d\rangle_{1}\left(\langle i d\rangle_{2}\right)=\langle\operatorname{expr}\rangle_{1} \ldots \quad \rightarrow \quad \ldots\langle i d\rangle_{1}\left(\langle i d\rangle_{2}\right)=\langle\operatorname{expr}\rangle_{1} \ldots$
... $<i d>_{1}\left(<e \operatorname{expr}>_{2}\right) . . . \quad . . \ll e x p r>3 .$.
where $<$ expr $>_{3}$ is $<$ expr $>_{1}$ with $\left\langle i d>_{2}\right.$ replaced by $\left\langle\right.$ expr> $>_{2}$

- Rule 1

$\ldots\langle i d\rangle_{1}\left(\langle i d\rangle_{2}\right)=\langle\operatorname{expr}\rangle_{1} \ldots \quad \rightarrow \quad \ldots\langle i d\rangle_{1}\left(\langle i d\rangle_{2}\right)=\langle\operatorname{expr}\rangle_{1} \ldots$
$\ldots<i d>_{1}\left(<e \operatorname{expr}>_{2}\right) . .$.
... <expr> $>_{3}$...
where $<$ expr $>_{3}$ is <expr> $>_{1}$ with $\left\langle i d>_{2}\right.$ replaced by $\left\langle\right.$ expr $>_{2}$

- Rules $2-\infty$
$\ldots(0+0)$... \rightarrow... 0 ...
... ($0-0$) ... \rightarrow... 0 ...
$\ldots(1+0) \ldots \rightarrow 1 \ldots$
$\ldots(1-0) \ldots \rightarrow+1 \ldots$
$\ldots(0+1) \ldots \rightarrow$... $1 \ldots$
$\ldots(0-1) \ldots \rightarrow$... -1 ...
... $(2+0) \ldots \rightarrow \ldots 2 \ldots$
etc.
... (2-0) ... \rightarrow... 2 ... etc.

Homework

- Some evaluations
- Some membership proofs
- See the web page for details
- Due next Tuesday, August 27, 11:59 PM

Where is This Going?

Next time:

- Shift syntax slightly to match that of Scheme
- Add new clauses to the expression grammar
- Add new evaluation rules

Current goal is to learn Scheme, but we'll use algebraic techniques all semester

