
Procedures

(finish implementation in DrScheme)

Different representation of environments:

(define-datatype environment environment?
 (empty-env-record)
 (extended-env-record
 (syms (list-of symbol?))
 (vec vector?)
 (env environment?)))

Recusion

Suppose we try to write the fact function using only let

let fact = proc(n) if n then ∗(n, (fact −(n, 1))) else 1
 in (fact 10)

The above doesn’t work, because fact is not bound in the local function

We’ll add letrec, but first we’ll see how to implement fact without it...

Recusion with Let

Problem: fact can’t see itself

Note: anyone calling fact can see fact

Idea: have the caller supply fact to fact (along with a number)

let fact = proc(n, f) if n then ∗(n, (f −(n, 1) f)) else 1
 in (fact 10 fact)

this works!

What Happened?

The key insight is delaying some work to the caller

We can exploit this idea to implement letrec, but in a slightly different
way

letrec requires an environment that refers to itself

We can delay the actual construction of the enviornment until the
environment is used

1-11

Recursive Environments

(define-datatype environment environment?
 (empty-env-record)
 (extended-env-record
 (syms (list-of symbol?))
 (vec vector?)
 (env environment?))
 (recursively-extended-env-record
 (proc-names (list-of symbol?))
 (idss (list-of (list-of symbol?)))
 (bodies (list-of expression?))
 (env environment?)))

Implementing letrec

(implement in DrScheme)

Back to Recusion with Let: What Really Happened?

Allowing functions to be values is a powerful idea

As it turns out, we don’t even need let !

let <id>1 = <expr>1 ... <id>n = <expr>n in <expr>

is the same as

(proc(<id>1, ... <id>n) <expr> <expr>1 ... <expr>n)

Back to Recusion with Let: What Really Happened?

Allowing functions to be values is a powerful idea

As it turns out, we don’t even need let !

(let ([<id>1 <expr>1] ... [<id>n = <expr>n]) <expr>)

is the same as

((lambda (<id>1 ... <id>n) <expr>) <expr>1 ... <expr>n)

12-16

The Lambda Calculus

We don’t even need functions of multiple arguments...

((lambda (<id>1 ... <id>n) <expr>) <expr>1 ... <expr>n)

is the same as

(((lambda (<id>1) ... (lambda (<id>n) <expr>)) <expr>1) ... <expr>n)

Passing multiple arguments one-at-a-time is called currying

The lambda calculus has only single-argument lambda and
single-argument function calls, and it’s computationally complete

17-20

