
Adding Procedures to the Book Language

Today we’ll add procedures to the Book language

First extension: top-level function definitions

not in the book

Second extension: local functions

in the book

Top-Level Procedure Definitions

Concrete syntax:

<prog> ::= { <id> <funcdef> } * <expr>
<funcdef> ::= (<id>*) = <expr>
<expr> ::= (<id> <expr>*)

identity(x) = x
in (identity 7)

Top-Level Procedure Definitions

Concrete syntax:

<prog> ::= { <id> <funcdef> } * <expr>
<funcdef> ::= (<id>*) = <expr>
<expr> ::= (<id> <expr>*)

fact(n) = if n then ∗(n, (fact −(n, 1))) else 1
identity(x) = x
in (identity (fact 10))

Top-Level Procedure Definitions

Abstract syntax:

<prog> ::= (a-program
 (list <id>*) (list <funcdef>*) <expr>)

<funcdef> ::= (a-funcdef (list <id>*) <expr>)
<expr> ::= (app−exp <id> (list <expr>*))

When evaluating a procedure application, we’ll need a way to find a
defined procedure

Use an environment (so we have two: local and top-level)

1-7

Implementing Top-Level Procedure Definitions

(implement in DrScheme)

Adding Local Procedures to the Book Language

First, we’ll explore more procedure concepts in Mini-Scheme

Then, we’ll implement them for an extended Book language

Local Definitions in Mini-Scheme

In Mini-Scheme, so far, we have two kinds of let expressions

Local values:

(let ([x 5][y 7])
 (+ x y))

Local definitions:

(let ([identity (lambda (x) x)])
 (identity 5))

It’s possible to collapse these into a single notion of local bindings

Lambda as an Expression

To collapse them, we must:

allow (lambda (<id>) <expr>) as an expression

change the application grammar to (<expr> <expr>)

<expr> ::= <num>
::= <id>
::= (+ <expr> <expr>)
::= (let ([<id> <expr>]) <expr>)
::= (<expr> <expr>)
::= (lambda (<id>) <expr>)

<val> ::= <num>
::= (lambda (<id>) <expr>)

8-14

Evaluation with Lambda Expressions

(let ([identity (lambda (x) x)])
 (identity 5))

→

((lambda (x) x) 5) usual substitution with values

→

5 new procedure application rule

New Application Rule

... ((lambda (<id>1...<id>k) <expr>a) <val>1...<val>k) ...

→
... <expr>b ...

where <expr>b is <expr>a with free <id>i replaced by <val>i

Procedures as Values

What if a lambda expression appears as a result?

(let ([mk−add (lambda (x) (lambda (y) (+ x y)))])
 (let ([add5 (mk−add 5)])
 (add5 7)))

Evaluation with Procedures as Values

(let ([mk−add (lambda (x) (lambda (y) (+ x y)))])
 (let ([add5 (mk−add 5)])
 (add5 7)))
→
(let ([add5 ((lambda (x) (lambda (y) (+ x y))) 5)])
 (add5 7))
→
(let ([add5 (lambda (y) (+ 5 y))])
 (add5 7))
→
((lambda (y) (+ 5 y)) 7)
→
(+ 5 7) → 12

15-21

Teminology: First-Order and Higher-Order

The procedures supported by top-level definitions are first-order
procedures

A procedure cannot consume or produce a procedure

Methods in Java and procedures in Pascal and Fortran are
first-order

Functions C are first-order, but function pointers are values

Teminology: First-Order and Higher-Order

The procedures supported by lambda are higher-order procedures

A procedure can return a procedure that returns a procedure that
consumes a procedure that returns a procedure...

Procedures in Scheme are higher-order

Procedure Expressions in the Book Language

Concrete extensions:

<prog> ::= <expr>
<expr> ::= proc (<id>*(,)) <expr>

::= (<expr> <expr>*)

let identity = proc(x) x
 in (identity 5)
→→ 5

Procedure Expressions in the Book Language

Concrete extensions:

<prog> ::= <expr>
<expr> ::= proc (<id>*(,)) <expr>

::= (<expr> <expr>*)

let sum = proc(x, y, z) +(x, +(y, z))
 in (sum 10 20 30)
→→ 60

22-26

Procedure Expressions in the Book Language

Concrete extensions:

<prog> ::= <expr>
<expr> ::= proc (<id>*(,)) <expr>

::= (<expr> <expr>*)

(proc(x) x 5)
→→ 5

Procedure Expressions in the Book Language

Concrete extensions:

<prog> ::= <expr>
<expr> ::= proc (<id>*(,)) <expr>

::= (<expr> <expr>*)

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in let x = 10
 in (add5 6)

→→ 11

Evaluation with Environments

Expr Env

let x = +(2, 3)
 in x { }

This trace shows the expression and environment arguments to
eval-expresson

Evaluation with Environments

Expr Env

let x = +(2, 3)
 in x { }

+(2, 3) { }

Arrows show nested recursive calls

27-31

Evaluation with Environments

Expr Env

let x = +(2, 3)
 in x { }

5 { }

Evaluation with Environments

Expr Env

let x = +(2, 3)
 in x { }

5 { }

Eventually a value is reached for each recursive call

To continue with let, extend the environment and evaluate the body

Evaluation with Environments

Expr Env

x { x = 5 }

Drop the context for the recursive body evaluation, since it isn’t needed

Evaluation with Environments

Expr Env

5 { x = 5 }

32-35

Evaluation with Environments

Expr Env

let x = 5
 in let x = 6
 in x

{ }

Another example: nested let

Evaluation with Environments

Expr Env

let x = 5
 in let x = 6
 in x

{ }

5 { }

Evaluation with Environments

Expr Env

let x = 5
 in let x = 6
 in x

{ }

5 { }

Evaluation with Environments

Expr Env

let x = 6
 in x { x = 5 }

36-39

Evaluation with Environments

Expr Env

let x = 6
 in x { x = 5 }

6 { x = 5 }

Evaluation with Environments

Expr Env

let x = 6
 in x { x = 5 }

6 { x = 5 }

New value for x replaces the old one for the body

Evaluation with Environments

Expr Env

x { x = 6 }

Evaluation with Environments

Expr Env

6 { x = 6 }

40-43

Evaluation with Environments

Expr Env

let x = 5
 in let y = let x = 6 in x
 in x

{ }

Another example: let nested in a different way

Evaluation with Environments

Expr Env

let x = 5
 in let y = let x = 6 in x
 in x

{ }

5 { }

Evaluation with Environments

Expr Env

let x = 5
 in let y = let x = 6 in x
 in x

{ }

5 { }

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x { x = 5 }

44-47

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x { x = 5 }

let x = 6 in x { x = 5 }

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x { x = 5 }

let x = 6 in x { x = 5 }

6 { x = 5 }

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x { x = 5 }

let x = 6 in x { x = 5 }

6 { x = 5 }

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x { x = 5 }

x { x = 6 }

48-51

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x { x = 5 }

6 { x = 6 }

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x { x = 5 }

6 { x = 6 }

What environment is extended with y = 6 ?

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x { x = 5 }

6 { x = 6 }

Answer: the original one for the let of y

Evaluation with Environments

Expr Env

x { x = 5, y = 6 }

52-55

Evaluation with Environments

Expr Env

5 { x = 5, y = 6 }

Evaluation with Procedures and Environments

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

Evaluation with Procedures and Environments

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

proc(x) proc(y) +(x, y) {}

Is a proc expression a value?

A lambda was a value in Scheme... so let’s say it’s ok

this choice will turn out to be slightly wrong

Evaluation with Procedures and Environments

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

proc(x) proc(y) +(x, y) {}

56-61

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = proc(x) proc(y) +(x, y) }

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = proc(x) proc(y) +(x, y) }

(mkadd 5) { mkadd = proc(x) proc(y) +(x, y) }

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = proc(x) proc(y) +(x, y) }

(mkadd 5) { mkadd = proc(x) proc(y) +(x, y) }

mkadd { mkadd = proc(x) proc(y) +(x, y) }

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = proc(x) proc(y) +(x, y) }

(mkadd 5) { mkadd = proc(x) proc(y) +(x, y) }

proc(x) proc(y) +(x, y) { mkadd = proc(x) proc(y) +(x, y) }

62-65

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = proc(x) proc(y) +(x, y) }

(mkadd 5) { mkadd = proc(x) proc(y) +(x, y) }

proc(x) proc(y) +(x, y) { mkadd = proc(x) proc(y) +(x, y) }

5 { mkadd = proc(x) proc(y) +(x, y) }

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = proc(x) proc(y) +(x, y) }

(mkadd 5) { mkadd = proc(x) proc(y) +(x, y) }

proc(x) proc(y) +(x, y) { mkadd = proc(x) proc(y) +(x, y) }

5 { mkadd = proc(x) proc(y) +(x, y) }

To evaluate an application, extend the application’s environment with a
binding for the argument

this isn’t quite right, either

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = proc(x) proc(y) +(x, y) }

proc (y) +(x, y) { mkadd = proc(x) proc(y) +(x, y)
 x = 5 }

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = proc(x) proc(y) +(x, y) }

proc (y) +(x, y) { mkadd = proc(x) proc(y) +(x, y)
 x = 5 }

So the value for add5 is also a procedure

Extend the original environment for the let

66-70

Evaluation with Procedures and Environments

Expr Env

(add5 6) { mkadd = proc(x) proc(y) +(x, y)
 add5 = proc (y) +(x, y) }

We can see where this is going... x has no value

What went wrong?

Evaluation with Procedures and Environments

Expr Env

(add5 6) { mkadd = proc(x) proc(y) +(x, y)
 add5 = proc (y) +(x, y) }

In Scheme, procedures as values worked because they had eager
substitutions

Evaluation with Procedures and Environments

Expr Env

(add5 6) { mkadd = proc(x) proc(y) +(x, y)
 add5 = proc (y) +(x, y) }

With lazy substitutions: combine a proc and an environment to get a
value

The combination is called a closure

Evaluation with Closures

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

71-74

Evaluation with Closures

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

proc(x) proc(y) +(x, y) {}

Evaluation with Closures

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

<proc(x) proc(y) +(x, y), { }> {}

Create a closure with the current environment to get a value

Evaluation with Closures

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

<(x), proc(y) +(x, y), { }> {}

Alternate form: arguments, body, and environment

Evaluation with Closures

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

<(x), proc(y) +(x, y), { }> {}

A closure is a value

75-78

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = <(x), proc(y) +(x, y), { }> }

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = <(x), proc(y) +(x, y), { }> }

(mkadd 5) { mkadd = <(x), proc(y) +(x, y), { }> }

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = <(x), proc(y) +(x, y), { }> }

(mkadd 5) { mkadd = <(x), proc(y) +(x, y), { }> }

mkadd { mkadd = <(x), proc(y) +(x, y), { }> }

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = <(x), proc(y) +(x, y), { }> }

(mkadd 5) { mkadd = <(x), proc(y) +(x, y), { }> }

<(x), proc(y) +(x, y), { }> { mkadd = <(x), proc(y) +(x, y), { }> }

79-82

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = <(x), proc(y) +(x, y), { }> }

(mkadd 5) { mkadd = <(x), proc(y) +(x, y), { }> }

<(x), proc(y) +(x, y), { }> { mkadd = <(x), proc(y) +(x, y), { }> }

5 { mkadd = <(x), proc(y) +(x, y), { }> }

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = <(x), proc(y) +(x, y), { }> }

(mkadd 5) { mkadd = <(x), proc(y) +(x, y), { }> }

<(x), proc(y) +(x, y), { }> { mkadd = <(x), proc(y) +(x, y), { }> }

5 { mkadd = <(x), proc(y) +(x, y), { }> }

To evaluate an application, extend the closure’s environment with a
binding for the argument

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = <(x), proc(y) +(x, y), { }> }

proc (y) +(x, y) { x = 5 }

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = <(x), proc(y) +(x, y), { }> }

<(y), +(x, y), { x = 5 }> { x = 5 }

Again, create a closure

Note that the x binding is saved in the closure

83-86

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6) { mkadd = <(x), proc(y) +(x, y), { }> }

<(y), +(x, y), { x = 5 }> { x = 5 }

Evaluation with Closures

Expr Env

(add5 6) { mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

Evaluation with Closures

Expr Env

(add5 6) { mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

add5
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

Evaluation with Closures

Expr Env

(add5 6) { mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

<(y), +(x, y), { x = 5 }> { mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

87-90

Evaluation with Closures

Expr Env

(add5 6) { mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

<(y), +(x, y), { x = 5 }> { mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

6
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

Evaluation with Closures

Expr Env

(add5 6) { mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

<(y), +(x, y), { x = 5 }> { mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

6
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

Extend the closure’s environment { x = 5 } with a binding for y

Evaluation with Closures

Expr Env

+(x, y) { x = 5, y = 6 }

This is clearly going to work

Procedure Expressions in the Book Language

Abstract extensions:

<prog> ::= (a-program <expr>)
<expr> ::= (proc−exp (list <id>*) <expr>)

::= (app−exp <expr> (list <expr>*))
<val> ::= <num>

::= <proc>
<proc> ::= (closure (list <id>*) <expr> <env>)

91-94

