The Arbitrariness of Variable Names

® Are the following two programs equavalent?

(define (f x) (+ x 1)) (define (fy) (+v 1))
(f 10) (f 10)

yes

argument is consistently renamed

The Arbitrariness of Variable Names

® Are the following two programs equavalent?

(define (f x) (+ x 1)) (define (f x) (+v 1))
(f 10) (f 10)

no

not a use of the argument anymore

The Arbitrariness of Variable Names

® Are the following two programs equavalent?

(define (f x) (+x 1)) (define (fy) (+x 1))
(f10) (f 10)

no

not a use of the argument anymore

The Arbitrariness of Variable Names

® Are the following two programs equavalent?

(define (f x) (+y 1)) (define (f z) (+vy 1))
(f 10) (f 10)

yes

argument never used, so almost any name is ok

1-8



The Arbitrariness of Variable Names

® Are the following two programs equavalent?

(define (f x) (+y 1)) (define (fy) (+y 1))
(f 10) (f 10)

no

now a use of the argument

The Arbitrariness of Variable Names

® Are the following two programs equavalent?

(define (f x) (+y 1)) (define (f x) (+ z 1))
(f 10) (f 10)

no

still an undefined variable, but a different one

The Arbitrariness of Variable Names

® Are the following two programs equavalent?

(define (f x) (define (f 2)
(let ([y 10]) (let ([y 10])
(+xy)) (+zy))
yes

argument is consistently renamed

The Arbitrariness of Variable Names

® Are the following two programs equavalent?

(define (f x) (define (f x)
(let ([y 10]) (let ([z 10])
(+xy)) (+x2)))
yes

local variable is consistently renamed

9-16



The Arbitrariness of Variable Names

® Are the following two programs equavalent?

(define (f x) (define (f x)
(let ([y 10]) (let ([x 10])
(+xy)) (+xx)))
no

local variable now hides the argument

The Arbitrariness of Variable Names

® Are the following two programs equavalent?

(define (f x) (define (fy)
(let (ly 10]) (let ([y 10])
(+xy) +yy))
no

local variable now hides the argument

Free and Bound Variables
® A variable for the argument of a function or the name of a local
variable is a binding occurrence
(define (fx y) (+xy 2))

(let ([a 3][c 4]) (+abc))

Free and Bound Variables
® A use of a function argument or a local variable is a bound
occurrence
(define (f x y) (+ x y 2))

(let ([a3][c 4]) (+abc))

17-22



Free and Bound Variables
® A use of a variable that is not function argument or a local variable is a
free variable
(define (fxy) (+xVy z2))
(let ([a 3][c 4]) (+ab c))

Evaluating Let

... (let ([<id>, <val>]...[<id>, <val>]) <expr>.) ...
or <EXPr>; ...

where <expr>, is <expr>, with free <id>, replaced by <val>;

(let ([x 10]) (let ([x 2]) x))
(let ([x 21) %)

2

Evaluating Let

... (let ([<id>; <val>{]...[<id>, <val>,]) <expr>,) ...
.. <EXPr>, ...

where <expr>, is <expr>, with free <id>; replaced by <val>

(let ([x 10])
(let ([x (+x 1)]) X))

Evaluating Let

... (let ([<id>; <val>{]...[<id>, <val>,]) <expr>,) ...
.o <EXPr>, ...

where <expr>, is <expr>, with free <id>; replaced by <val>,

(let ([x 10])
(let ([x (+x 1)]) x))

(let ([x (+10 1)]) x)

(Tet (x11])x) - 11

23-27



Evaluating Function Calls, Revised

... (define (<id>, <id>,...<id>,) <expr>,) ...
oo (Rid>, <val>,...<val>)) ...

-

... (define (<id>, <id>,...<id>,) <expr>,) ...
.o <EXPr>, ...

where <expr>, is <expr>, with free <id>; replaced by <val>,

Local Functions

Recall that
(define <id>, (lambda (<id>,...<id>,) <expr>))
is shorthand for
(define (<id>, <id>,...<id>,) <expr>)
New rule: lambda is allowed in let bindings to define local functions:

(let ([f (ambda (x) (+x 1))])
(f 10))

Evaluation of Local Functions

(let ([f (lambda (x) (+ x 1))])
(f 10))

(define fi (lambda (x) (+ x 1))
(f1075 10)

(aefine fis (lambda (x) (+x 1))
(+10 1)

—

11

Evaluation of Local Functions

... (let ([<id> (lambda (<id>,...<id>,) <expr>)]) <expr>,) ...

... (define (<id>, <id>,...<id>,) <expr>)

... <EXpr>, ...
where <expr>, is <expr>, with free <id> replaced by <id>, and ,is a
subscript that has never been used before, and never will be used again

28-32



Lexical Scope Free and Bound Variables in Scheme

(define (f x) For simplicity, we consider a variant of Scheme that is more restricted
(let ([g (lambda (y) (+y x))]) than usual:
(let ([x 2])
(g 3)) <expr> = <num>
(f 7) n= <id>

(+ <expr> <expr>)

_ n= (let ([<id> <expr>]) <expr>)
Will x be 7 or 2 ? == (let ([<id> (lambda (<id>) <expr>)]) <expr>)
7, due to /exical scope: the value of a bound occurrence comes from its i (<id> <expr>)
binding

Need a complete definition of free and bound...

Free Variables in Scheme Free Variables in Scheme

® <num> has no free variables
See implementation in Scheme

® <id> has one free variable: <id>

® (+ <expr>, <expr>,) has all the free variables of <expr>, and <expr>, Reviews def i ne- dat at ype motivation and use
combined

® (let ([<id>, <expr>,]) <expr>,) has all the free variables of <expr>,, but
without <id>,, plus all the free variables of <expr>,

® (let ([<id>, (lambda (<id>,) <expr>,)]) <expr>,) has all the free
variables of <expr>,, but without <id>,, plus all the free variables of
<expr>,, but without <id>,

® (<id> <expr>) has all the free variable <id> plus all the free variables of
<expr>

33-40



Bound Variables in Scheme
® <num> has no bound variables

® <id> has no bound variables

® (+ <expr>; <expr>,) has all the bound variables of <expr>, and <expr>,

combined

® (let ([<id>, <expr>,]) <expr>,) has the bound variable <id>, if it is free in

<expr>,, plus all the bound variables of <expr>, and <expr>,

® (let ([<id>, (lambda (<id>,) <expr>,)]) <expr>,) has the bound variable
<id>, if it is free in <expr>,, plus the bound variable <id>, if it is free in
<expr>,, plus all the bound variables of <expr>, and <expr>,

® (<id> <expr>) has all the bound variables of <expr>

let*

letOis a shorthand for nested lets
(letO([<id>, <expr>y]...[<id>, <expr>{]) <expr>)

(let ([<id>;, <expr>y]) ... (let ([<id>, <expr>{]) <expr>)...)

(let (x 1]y xX][zY]) Z) - — undefined variable x

(letD(x 1]y x][zy]) 2) -~ 1

letrec

letrec binds its identifiers in local function bodies, as well as the main
body

... (letrec ([<id> (lambda (<id>,...<id>,) <expr>.)]) <expr>,) ...

... (define (<id>, <id>,...<id>,) <expr>,)

... <EXPr>; ...
where <expr>, is <expr>, with free <id> replaced by <id>,, <expr>,is
<expr>. with free <id> replaced by <id>, and , is a subscript that has
never been used before, and never will be used again

Free Variables with letrec

® (letrec ([<id>, (lambda (<id>,) <expr>,)]) <expr>,) has all the free
variables of <expr>,, but without <id>,, plus all the free variables of
<expr>,, but without <id>, and <id>,

41-45



Bound Variables with letrec

® (let ([<id>, (lambda (<id>,) <expr>,)]) <expr>,) has the bound variable
<id>, if it is free in <expr>, or <expr>,, plus the bound variable <id>, if it
is free in <expr>,, plus all the bound variables of <expr>, and <expr>,

Language EoPL 3.4

<expr> = <num>
n= <id>
n= <prim> (<expr>*")
= if <expr>then <expr> else <expr>
= let { <id> = <expr> }* in <expr>

Language EoPL 3.4

(define-datatype expression expression?
(lit-exp
(dat um nunber ?))
(var-exp
(id synbol ?))
(pri mapp-exp
(rator primtive?)
(rands (list-of expression?)))
(if-exp
(test-exp expression?)
(then-exp expression?)
(el se-exp expression?))
(let-exp
(ids (list-of synbol?))
(rands (list-of expression?))
(body expression?)))

Free Variables in EoPL 3.4

® (lit-exp <num>) has no free variables
® (var-exp <symbol>) has one free variable: <symbol>

® (primapp-exp <prim> (list <expr>; ... <expr>,)) has all the free
variables of <expr>, through <expr>, combined

® (if—exp <expr>; <expr>, <expr>;) has all the free variables of <expr>,
through <expr>; combined

® (let—exp (list <symbol>; ... <symbol>,)
(list <expr>; ... <expr>,)
<expr>,) has all the free variables of
<expr>,, but without <symbol>, through <symbol>,, plus all the free
variables of <expr>, through <expr>,

46- 49



Bound Variables in EoPL 3.4

® (lit-exp <num>) has no bound variables
® (var-exp <symbol>) has no bound variables

® (primapp-exp <prim> (list <expr>, ... <expr>,)) has all the bound
variables of <expr>, through <expr>, combined

® (if—exp <expr>; <expr>, <expr>;) has all the bound variables of <expr>,
through <expr>; combined

® (let-exp (list <symbol>, ... <symbol>,))
(list <expr>; ... <expr>,)
<expr>) has all the bound variables of
<expr>, through <expr>,, plus any of <symbol>, through <symbol>,
that are free variables of <expr>,

50-51



