
Goals

� Free and bound variables

� Let construct

� Lexical scope
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(define (f x)

(cond

[(> (big-calculation x) 15)

(g (big-calculation x))]

[else (h (big-calculation x))]))

or

(define (f x)

(let ((y (big-calculation x)))

(cond

[(> y 15) (g y)]

[else (h y)])))
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Let introduces local bindings

(let ((name1 expression1)

...

(nameN expressionN))

body)

Each of the names is bound in body, but none

of the names are bound in the expressions.
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Some examples:

(define (example1 x)

(let ((a (* x 2))

(b (* x 3)))

(let ((c (+ a b)))

(if (> c 100)

(+ c a)

(+ c b)))))

(example1 10) = 80

(example1 30) = 10
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(let((a 5))

(let ((a 6))

a))

=

6

(let ((a 5))

(+ (let ((a 6))

(+ a a))

a))

=

17
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Rule1

(let ((name1 expression1)

...

(nameN expressionN))

body)

=

(let ((name2 expression2)

...

(nameN expressionN))

body1)

where body1 is the expression resulting from

substituting the value of expression1 into body

for all the variables of name1.
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Rule2

(let () body) = body
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Rule1 is broken. Using it:

(let ((a 5))

(+ (let ((a 6))

(+ a a))

a))

=

(let ()

(+ (let ((a 6))

(+ 5 5))

5))
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(let ()

(+ (let ((a 6))

(+ 5 5))

5))

=

(+ (let ((a 6))

(+ 5 5))

5)
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(+ (let ((a 6))

(+ 5 5))

5)

=

(+ (let ()

(+ 5 5))

5)
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(+ (let ()

(+ 5 5))

5)

=

(+ (+ 5 5)

5)
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(+ (+ 5 5)

5)

=

(+ 10 5)

=

15

It was supposed to be 17

The problem is that the a in the (+ a a) was

supposed to be 6, but we replaced it with 5.
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Revised rule1:

(let ((name1 expression1)

...

(nameN expressionN))

body)

=

(let ((name2 expression2)

...

(nameN expressionN))

body1)

where body1 is the expression resulting from

substituting the value of expression1 into body

for all the free variables of name1.
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This means our �rst step should have been

(let ((a 5))

(+ (let ((a 6))

(+ a a))

a))

=

(let ()

(+ (let ((a 6))

(+ a a))

5))
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In this example the body of the outer let is:

(+ (let ((a 6))

(+ a a))

a)

The as are called bound. They are bound by

the let.

The a is called free. It is not bound in this

expression.

It is bound if we consider the previous program.

But by a di�erent let.
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De�ne also binds variables. (de�ne x 10)

(+ x 5)

=

15

Function arguments are binding too.

(de�ne (f x)

(+ x 10))

(f 10)

=

20
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exp = data

j (operator exp exp)

j (cond

[exp exp]

[else exp])

(let ((name exp))

exp)

where data is some set of primitive scheme

data (strings, numbers, booleand, etc.) and

operator is some set of binary operators on

that data (+, =, and, string-append, ...)
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let* is similar to let.

(let((a 5))

(let ((a 10) (b (+ 5 a)))

b))

=

10

(let((a 5))

(let* ((a 10) (b (+ 5 a)))

b))

=

15
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In let* nameX is bound in expressionX+1 and

up as well as in the body.

letrec is similar to let, except that each name

is bound in every expression.

This isn't useful without local function de�-

nitions.
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