
Goals

� Free and bound variables

� Let construct

� Lexical scope

1

(define (f x)

(cond

[(> (big-calculation x) 15)

(g (big-calculation x))]

[else (h (big-calculation x))]))

or

(define (f x)

(let ((y (big-calculation x)))

(cond

[(> y 15) (g y)]

[else (h y)])))

2

Let introduces local bindings

(let ((name1 expression1)

...

(nameN expressionN))

body)

Each of the names is bound in body, but none

of the names are bound in the expressions.

3

Some examples:

(define (example1 x)

(let ((a (* x 2))

(b (* x 3)))

(let ((c (+ a b)))

(if (> c 100)

(+ c a)

(+ c b)))))

(example1 10) = 80

(example1 30) = 10

4



(let((a 5))

(let ((a 6))

a))

=

6

(let ((a 5))

(+ (let ((a 6))

(+ a a))

a))

=

17

5

Rule1

(let ((name1 expression1)

...

(nameN expressionN))

body)

=

(let ((name2 expression2)

...

(nameN expressionN))

body1)

where body1 is the expression resulting from

substituting the value of expression1 into body

for all the variables of name1.

6

Rule2

(let () body) = body

7

Rule1 is broken. Using it:

(let ((a 5))

(+ (let ((a 6))

(+ a a))

a))

=

(let ()

(+ (let ((a 6))

(+ 5 5))

5))

8



(let ()

(+ (let ((a 6))

(+ 5 5))

5))

=

(+ (let ((a 6))

(+ 5 5))

5)

9

(+ (let ((a 6))

(+ 5 5))

5)

=

(+ (let ()

(+ 5 5))

5)

10

(+ (let ()

(+ 5 5))

5)

=

(+ (+ 5 5)

5)

11

(+ (+ 5 5)

5)

=

(+ 10 5)

=

15

It was supposed to be 17

The problem is that the a in the (+ a a) was

supposed to be 6, but we replaced it with 5.

12



Revised rule1:

(let ((name1 expression1)

...

(nameN expressionN))

body)

=

(let ((name2 expression2)

...

(nameN expressionN))

body1)

where body1 is the expression resulting from

substituting the value of expression1 into body

for all the free variables of name1.

13

This means our �rst step should have been

(let ((a 5))

(+ (let ((a 6))

(+ a a))

a))

=

(let ()

(+ (let ((a 6))

(+ a a))

5))

14

In this example the body of the outer let is:

(+ (let ((a 6))

(+ a a))

a)

The as are called bound. They are bound by

the let.

The a is called free. It is not bound in this

expression.

It is bound if we consider the previous program.

But by a di�erent let.

15

De�ne also binds variables. (de�ne x 10)

(+ x 5)

=

15

Function arguments are binding too.

(de�ne (f x)

(+ x 10))

(f 10)

=

20

16



exp = data

j (operator exp exp)

j (cond

[exp exp]

[else exp])

(let ((name exp))

exp)

where data is some set of primitive scheme

data (strings, numbers, booleand, etc.) and

operator is some set of binary operators on

that data (+, =, and, string-append, ...)

17

let* is similar to let.

(let((a 5))

(let ((a 10) (b (+ 5 a)))

b))

=

10

(let((a 5))

(let* ((a 10) (b (+ 5 a)))

b))

=

15

18

In let* nameX is bound in expressionX+1 and

up as well as in the body.

letrec is similar to let, except that each name

is bound in every expression.

This isn't useful without local function de�-

nitions.

19


