Goals

- Define-datatype
- Concrete Syntax vs. Abstract Syntax
- Practice with recursive programs

Alternate concrete syntax for arithmetic ex-
pressions
$-(*(+(1,2), 4)$, /(64, 2))

```
A-exp \(=\) number
| +(A-exp, A-exp)
| -(A-exp, A-exp)
| *(A-exp, A-exp)
| /(A-exp, A-exp)
| +(A-exp,A-exp)
    | -(A-exp, A-exp)
    / /(A-exp, A-exp)
```

 \((64,2))\)
 A-exp $=$ number
| $A-\exp +A-\exp$
| A-exp - A-exp
| A-exp * A-exp
| A-exp / A-exp
| (A-exp)
Concrete syntax of arithmetic expressions $(1+2) * 4-64 / 2$

12

Concrete syntax of a language specifies exactly how to write down an expression of that language.

To write a program that operates on a Ianguage we need to represent expressions in that language as computer data.

Such a representation is called an abstract syntax.

Since programming languages are usually treelike, we call the internal representation of an expression an Abstract Syntax Tree (AST)

```
A-expAST = number
    | (list '+ A-expAST A-expAST)
    | (list '- A-expAST A-expAST)
    | (list '* A-expAST A-expAST)
    | (list '/ A-expAST A-expAST)
```

An abstract syntax for A-exp. (list '- (list '* (list '+ 1 2) 4)
(list '/ 64 2))
The correspondence between concrete and abstract syntax is not always so obvious.

ASIDE:

A compiler course usually spends a considerable time on parsing, the translation from concrete to abstract syntax.

Thursday you will see a tool to parse a language like our second A-exp example.

Let's do something simple.
Write a program to count the number of + operators in an A-exp

Define-datatype to the rescue.

Our abstract syntax is lacking:

- Lots of car cdr cadar caddr caddar, etc...
- No nmemonic clues as to what each part of the tree represents.
- Not much error checking

```
(define-datatype a-exp a-exp?
    [num (val number?)]
    [plus (Ihs a-exp?)
            (rhs a-exp?)]
    [minus (Ihs a-exp?)
            (rhs a-exp?)]
    [times (Ihs a-exp?)
            (rhs a-exp?)]
    [divide (Ihs a-exp?)
            (rhs a-exp?)])
(minus (times (plus (num 1) (num 2))
                                    (num 4))
            (divide (num 64) (num 2)))
```

```
(define (count+ exp)
    (cases a-exp exp
        [num (n) 0]
        [plus (I r) (+ 1 (count+ I) (count+ r))]
        [minus (I r) (+ (count+ I) (count+ r))]
        [times (I r) (+ (count+ I) (count+ r))]
        [divide (I r) (+ (count+ I) (count+ r))]
    [else (error 'count+ "given an unknown a-exp")]
```

Define-datatype provides a mechanism for defining and building trees (including ASTs) Cases provides a mechanism for extracting information from a define-datatype tree

This is how we might write a BNF for a-exp as defined above (with 2 extensions)

```
va-exp = (num number)
    | (plus va-exp va-exp)
    | (minus va-exp va-exp)
    | (times va-exp va-exp)
    | (divide va-exp va-exp)
    | (pow va-exp va-exp)
    | (var symbol)
```

Here is the extended define-dataype:

```
(define-datatype a-exp a-exp?
    [num (val number?)]
    [plus (Ihs a-exp?)
            (rhs a-exp?)]
    [minus (Ihs a-exp?)
            (rhs a-exp?)]
    [times (Ihs a-exp?)
            (rhs a-exp?)]
    [divide (Ihs a-exp?)
        (rhs a-exp?)]
    [pow (Ihs a-exp?)
        (rhs a-exp?)]
    [var (name symbol?)])
```

How does this change affect the evaluator?

We need to add a case to handle pow and a case to handle var.

