
Programming Language Support for
Software Components

Matthew Flatt

University of Utah

Software Components

DB NumberInfo

GUI’

Log

Log

Snoop’

COM Objects as Components

Exports defined statically

COM Objects as Components

Exports defined statically

Imports defined dynamically
(through arbitrarily complex, uncheckable C code)

1-11



Software Components

DB NumberInfo

GUI’

Log

Log

Snoop’

Component Properties

Each component has a well-defined interface

Each component can be separately checked and compiled

Interface specifies the shape of imports, not the source

Components can be instantiated multiple times

Component linking is hierarchical

Components can have mutual dependencies (recursion)

Linking specifications are static and checked

 Language support for components

Component Languages

core language

Component Languages

component language

core language

12-15



Implemented Component Languages

DrScheme : a component extension of Scheme
Robert Bruce Findler, Shriram Krishnamurthi, Matthias Felleisen,
John Clements, Paul Steckler, Cormac Flanagan  (then @Rice)

http://www.drscheme.org/

Knit : a component language for C
Alastair Reid, Eric Eide, Jay Lepreau, Leigh Stoller  (@Utah)

http://www.cs.utah.edu/flux/alchemy/knit/

Jiazzi : a component language for Java
Sean McDirmid, Wilson Hsieh  (@Utah)

http://www.cs.utah.edu/plt/jiazzi/

Outline

Software Components

Unit Model of Software Components

Components and Classes

Jiazzi: Components in Java

Components for Systems Software

Related Work, Open Problems, Conclusion

Unit Definitions

Database

info error:str→void

type db = ...
fun new():db = ...
fun insert(d:db, key:str, v:info) = ...
fun delete(d:db, key:str) = ...
...
makeStringHashTable()

db new:void→db insert:db×str×info→void

delete:db×str→void

imports

definitions
and expressions

exports

Imported and exported variables have types

Type expressions for variables can use imported and
exported types

Linking Units
PhoneBook

error:str→void

NumberInfo

type info = ...
fun numInfo(n:int):info = ...

info numInfo:int→info

Database

info error:str→void

...

db new:void→db insert:db×str×info→void

delete:db×str→void

db new:void→db insert:db×str×info→void

info numInfo:int→info
16-23



A Complete Program
IPB

PhoneBook

error:str→void

db new:void→db insert:db×str×info→void

info numInfo:int→info

Main

db new:void→db open:db→bool

open(new())

Gui

db insert:db×str×info→void

info numInfo:int→info

open:db→bool error:str→void

An Ill-formed Linkage
Bad

PhoneBook

type db = ...

db

OtherDatabase

type db = ...

db

Gui
db

fun open(pb:db) = ...

open:db→bool

Main

db open:db→bool

...

Mismatch

Unit Summary

Well-defined import and export interfaces

Explicit linking, external to the linked unit

Hierarchical linking through compound units

Static checking of links

Full model also covers dynamic linking

Outline

Software Components

Unit Model of Software Components

Components and Classes

Jiazzi: Components in Java

Components for Systems Software

Related Work, Open Problems, Conclusion

24-27



Expressiveness of Components and Classes

A Shape  is a Square

 or a Circle

draw : draw a Shape

or a Translated Shape

or a Diamond

bb : get a Shape’s box

Without modifying
core implementation
clients

Other Work on Extensibility

Steele, 1994

Felleisen and Cartwright, 1994

Liang, Hudak, and Jones, 1994

Duggan and Sourelis, 1996

Palsberg and Jay, 1997

Kuhne, 1997

Krishnamurthi, Felleisen, and Friedman, 1998

Clifton, Leavens, Chambers, and Millstein, 2000

Zenger and Odersky, 2001

Componential Extension

operation extension

variant extension

core datatype

Shape

→

→

client

client

client

Original Datatype and Client

Shape

Shape

Shape

... new ...

... new ...

31-36



Variant Extension

Shape

Shape

Shape

→

→

Shape →

Shape

... new ...

... new ...

Shape →

... new→ (new ,10) ...

... x=new ...

x

Operation Extension

Shape →

Shape →

Shape →

Shape →

Shape →

Shape

... new ...

... new ...

Shape →

... new→ (new ,10) ...

... x=new ...

x

Shape → x

... x .bb() ...

Self-Instantiation of the Datatype

Shape new 

new 

Shape

Shape

Shape

Shape

instantiates
wrong classes

Self-Instantiation of the Datatype

Shape

Shape new 

new 

Shape

Shape

Shape

Shape

fix with the
open class
pattern

40-46



Extensibility through Classes and Units

Allows both variant and operation extension

No modification (or recompilation) of existing modules

No programmer-maintained indirections

Natural: resulting structure matches a monolithic solution

Solution’s Natural Structure

operation extension

variant extension

core datatype

Shape

→

→

Solution’s Natural Structure

Shape

→

→

Outline

Software Components

Unit Model of Software Components

Components and Classes

Jiazzi: Components in Java

Components for Systems Software

Related Work, Open Problems, Conclusion

47-50



Jiazzi: Components for Java

Issues for a realistic, statically typed language:

Integrating with existing infrastructure

Defining component signatures

Avoiding method collisions

Programming with Jiazzi

X.sig Y.sig

X.unit Y.unit Y2.unit

X+Y2.unit

X.java Y.java

Y2.java

Programming with Jiazzi

X.sig Y.sig

X.unit Y.unit Y2.unit

X+Y2.unit

X.java Y.java

Y2.java

Jiazzi
compiler

linker X.class

Programming with Jiazzi

X.sig Y.sig

X.unit Y.unit Y2.unit

X+Y2.unit

X.java Y.java

Y2.java

A.class

B.class

Jiazzi
compiler

linker X.class

51-54



Jiazzi Signature Syntax

Almost:

 signature  shapes_s {

   class  Shape ≤ Object {  ...  }

   class   ≤ Shape {  ...  }

   class   ≤ Shape {  ...  }
}

Where does Object come from?

What if we need to instantiate  and  ?

What if Shape needs to be extended before  and  ?

Jiazzi Signature Syntax

Correct:

 signature  shapes_s<lang_p, fixpt_p> {

   class  Shape ≤ lang_p.Object {  ...  }

   class   ≤ fixpt_p.Shape {  ...  }

   class   ≤ fixpt_p.Shape {  ...  }
}

Jiazzi Signature Syntax

Signature of the variant extension:

 signature  more_shapes_s<lang_p, shapes_p> {

   class  → ≤ shapes_p.Shape {  ...  }

   class   ≤ shapes_p.Shape {  ...  }
}

Jiazzi Signature Syntax

Signature of the operation extension:

 signature  bbox_shapes_s<lang_p, shapes_p> {

   class  Shape ≤ shapes_p.Shape {  ...  }

   class   ≤ shapes_p.  {  ...  }

   class   ≤ shapes_p.  {  ...  }

   class  → ≤ shapes_p.→ {  ...  }

   class   ≤ shapes_p.  {  ...  }
}

55-59



Jiazzi Signature Syntax

Signature of an operation extension for shrink:

 signature  shrink_shapes_s<lang_p, shapes_p, fixpt_p> {

   class  Shape ≤ shapes_p.Shape {  ...  }

   class   ≤ shapes_p.  {

      ...  fixpt_p.  shrink( int  scale);  ... 
  }

   class   ≤ shapes_p.  {  ...  }

   class  → ≤ shapes_p.→ {  ...  }

   class   ≤ shapes_p.  {  ...  }
}

Jiazzi Unit Syntax

Less extensible version (can’t extend Shape early):

 atom  Shapes {

   export  shapes_out : shape_s<[java.lang], shapes_out>;
}

 /*  sources  "Shape.java", "Circle.java", "Square.java" */

Jiazzi Unit Syntax

More extensible version:

 atom  Shapes {

   import  shapes_in : shape_s<[java.lang], shapes_in>;

   export  shapes_out : shape_s<[java.lang], shapes_in>;
}

 /*  sources  "Shape.java", "Circle.java", "Square.java" */

 atom  Draw {

   import  shapes_in : shape_s<[java.lang], shapes_in>;

   export  draw_out : draw_s<[java.lang], shapes_in>;
}

 /*  sources  "Draw.java" */

Jiazzi: Components for Java

Issues for a realistic, statically typed language:

Integrating with existing infrastructure

Defining component signatures

Avoiding method collisions

60-64



Outline

Software Components

Unit Model of Software Components

Components and Classes

Jiazzi: Components in Java

Components for Systems Software

Related Work, Open Problems, Conclusion

Components for Systems Software

.o files

ld

executable

Most low-level software is implemented in C

Compiled object (.o) files act as components

Components for Systems Software

.o files

ld

executable

The boundaries and requirements of .o files are typically not
obvious

Components for Systems Software

.o files

??

executable

Some linking patterns cannot be expressed

65-68



Components for Systems Software

.o files

unit

executable

Units add boundary specifications, replace the linker

Low-Level Compositions

Initialization order is fragile

Threads Locks

Virtual Memory

Performance is crucial

Non-local properties need to be checked

Threads

multi-threaded

Initialization

Threads Locks

Virtual Memory

Programmer supplies local dependencies:

import1 ... importn

definition1

...
definitionm

export1 ... exportk

init-dep1

 ... 
init-depp

Linker schedules globally

Performance

Performance goal:

To make aggressive componentization practical

Not to speed up existing code

Achieve by optimizing across component boundaries

Relies on static nature of linking

69-77



Performance

...

...

lock(lock_t) { }
unlock(lock_t) { }

lock unlock

lock unlock

f() {
  lock(l);

  do work
  unlock(l);
}

...

...

=

...

lock(lock_t) { }
unlock(lock_t) { }
f() {
  lock(l);

  do work
  unlock(l);
}

...

Performance

...

lock(lock_t) { }
unlock(lock_t) { }
f() {
  lock(l);

  do work
  unlock(l);
}

...

=

...

f() {

  do work
}

...

Non-Local Checking

...

...

single f(...)

multi f(...)

...

...

 ?

Type-like anotations can detect mismatches

Non-Local Checking

...

...

single f(...)

multi f(...)

...

...

Type-like anotations can detect mismatches
79-83



Non-Local Checking

...

...

single f(...)

 f(...)

g() { ... f() ... }

 g(...)

multi f(...)

...

...

 ?

Also need to detect indirect mismatches

Non-Local Checking

...

...

single f(...)

 f(...)

g() { ... f() ... }

 g(...)

multi f(...)

...

...

Also need to detect indirect mismatches

Non-Local Checking

...

...

single f(...)

α f(...)

g() { ... f() ... }

α g(...)

multi f(...)

...

...

Also need to detect indirect mismatches

Non-Local Checking

...

...

single f(...)

multi f(...)

...

...

Can also automate mismatch repairs
84-87



Non-Local Checking

...

...

single f(...)

single f(...) lock(lock_t) ...

...

multi f(...)

multi f(...)

...

...

Can also automate mismatch repairs

Low-Level Components

Systems code benefits from an explicit component language

Additional practical concerns for low-level code require
extensions to the basic unit model

Knit and the OSKit

OSKit version "1": used .o files for all components

couldn’t create certain combinations

OSKit version "2": used COM for many components

too dynamic; errors reported late

significant overhead

OSKit version "3": uses units for most components

initial results are promising

still refining the language

Outline

Software Components

Unit Model of Software Components

Components and Classes

Jiazzi: Components in Java

Components for Systems Software

Related Work, Open Problems, Conclusion

88-93



Related Work

McIlroy

Szyperski: Component Software

Cedar/Mesa (Xerox PARC)

MacQueen, Harper, Crary, et al.: ML modules

Ancona and Zucca

Bracha

Open Problems

Interoperability among core languages

Effective specification of non-type properties

Resource control sensitive to component boundaries

Conclusion

Beyond object-oriented programming
- Szyperski

Units: a programming language for components

expressive

checkable

practical: DrScheme, Knit, Jiazzi, ...

94-98


