Typing Example: Number

- it could be checked directly as above
- Since the toy language has only single-argument functions, but it has two binary primitives, the above strategy is a good one for HW8

Typing Example: ? Argument

$$\frac{\{ x : T_1 \} \vdash x : T_1 \quad \{ x : T_1 \} \vdash 2 : int}{\{ x : T_1 \} \vdash +(x,2) : int}$$
$$\{ \} \vdash proc(? x) +(x,2) : (T_1 \to int)$$

 $T_1 = int$

simplified: (int \rightarrow int)

• Create a new type variable for each ?

Typing Example: Function-Calling Function

 $\{f: T_1\} \vdash 12: int$ $\{ f : T_1 \} \vdash (f 12) : T_2$ { } \vdash proc(? f)(f 12) : (T₁ \rightarrow T₂)

 $T_1 = (int \rightarrow T_2)$

simplified:
$$((\texttt{int} \rightarrow T_2) \rightarrow T_2)$$

Typing Example: Identity Applied
$\{\mathbf{x}:\mathbf{T}_{1}\}\vdash\mathbf{x}:\mathbf{T}_{1}$
$\{ \} \vdash proc(? x) x : (T_1 \to T_1) \qquad \{ \} \vdash false : \texttt{bool}$
$\{ \} \vdash (proc(? x)x false) : T_2$
$(\mathbf{T_1} ightarrow \mathbf{T_1}) = (\texttt{bool} ightarrow \mathbf{T_2})$
simplfied: bool
Infinite Loops
What if we extend the language with a special Ω expression that loops forever?
• if true then 1 else $\Omega \rightarrow \rightarrow 1$
• if false then 1 else $\Omega \rightarrow \rightarrow$ loops forever
• if true then proc(? x)x else $\Omega \rightarrow \rightarrow \text{proc}(? x)x$
What is the type of Ω ?

Typing Example: Infinite Loop Type Inference Summary • New type variable for each ? {}⊢true:bool {}⊢1:int $\{ \} \vdash \Omega : \mathbf{T_1}$ • New type variable for each application $\{ \} \vdash \text{ if true then 1 else } \Omega : \text{ int } \}$ • New type variable for each Ω $T_1 = int$ • Checking a type equation can force a type variable to match a certain type • Create a new type variable for each Ω The Universe of Programs **The Universe of Programs** • The goal of type-checking is to rule out bad programs programs that run programs that produce values forever +(1, **true**) • Unfortunately, some good programs will be ruled out, too +(1, if true then 1 else false) programs that crash • Every program falls into one of three categories

 $^{\rm O}$ Division by 0 is a *variant error*

The Universe of Programs

• There are other ways that we'd like to expand the set of well-formed programs

Polymorphism

no type: T1 can't be both bool and int

Polymorphism

• New rule: when type-checking the use of a let-bound variable, create fresh versions of unconstrained type variables

let f = proc(?₁ y)y : (T₁
$$\rightarrow$$
 T₁)
in if (f true) then (f 1) else (f 0)
(T₂ \rightarrow T₂) (T₃ \rightarrow T₃) (T₄ \rightarrow T₄)
int
T₂ = bool T₂ = int T₄ = int

• This rule is called *let-based polymorphism*