Typing Example: Number

$$
\} \vdash 5 \text { : int }
$$

Each

$$
E \vdash e: T
$$

is a call to type-of-expression with arguments e and E where the result is T

$$
\begin{aligned}
& \text { Typing Example: Sum } \\
& \frac{\} \vdash 1 \text { : int } \quad\} \vdash 2: \text { int }}{\} \vdash+(1,2): \text { int }}
\end{aligned}
$$

- Actually, the type checker treats primitives like functions, but it could be checked directly as above
- Since the toy language has only single-argument functions, but it has two binary primitives, the above strategy is a good one for HW8

Typing Example: Function

$$
\frac{\{\mathbf{x}: \text { int }\} \vdash \mathbf{x}: \text { int } \quad\{\mathbf{x}: \text { int }\} \vdash 2: \text { int }}{\{\mathbf{x}: \text { int }\} \vdash+(\mathbf{x}, 2): \text { int }} \frac{\} \vdash \operatorname{proc}(\text { int } \mathbf{x})+(\mathbf{x}, 2):(\text { int } \rightarrow \text { int })}{\text { in }}
$$

Typing Example: Function Call
$\{\mathbf{x}$: int $\} \vdash \mathbf{x}$: int
$\} \vdash \operatorname{proc}($ int $\mathbf{x}) \mathbf{x}:($ int \rightarrow int $) \quad\{ \} \vdash 12:$ int
$\left\} \vdash(\operatorname{proc}(\right.$ int $\mathbf{x}) \mathbf{x} 12): \mathbf{T}_{\mathbf{2}}$
$($ int \rightarrow int $)=\left(\right.$ int $\left.\rightarrow \mathbf{T}_{2}\right)$
simplified: int

- Create a new type variable for each application
- We'll see why this is convenient soon...

Typing Example: ? Argument

$$
\begin{gathered}
\frac{\left\{\mathbf{x}: \mathbf{T}_{1}\right\} \vdash \mathbf{x}: \mathbf{T}_{1} \quad\left\{\mathbf{x}: \mathbf{T}_{1}\right\} \vdash 2: \text { int }}{\left\{\mathbf{x}: \mathbf{T}_{1}\right\} \vdash+(\mathbf{x}, 2): \text { int }} \\
\left\} \vdash \operatorname{proc}(? \mathbf{x})+(\mathbf{x}, 2):\left(\mathbf{T}_{1} \rightarrow \text { int }\right)\right. \\
\mathbf{T}_{1}=\text { int } \\
\text { simplified }:(\text { int } \rightarrow \text { int })
\end{gathered}
$$

- Create a new type variable for each ?

Typing Example: Function-Calling Function

$$
\begin{gathered}
\frac{\left\{\mathbf{f}: \mathbf{T}_{1}\right\} \vdash \mathbf{f}: \mathbf{T}_{1} \quad\left\{\mathbf{f}: \mathbf{T}_{1}\right\} \vdash 12: \text { int }}{\left\{\mathbf{f}: \mathbf{T}_{1}\right\} \vdash(\mathbf{f} 12): \mathbf{T}_{2}} \\
\left\} \vdash \operatorname{proc}(? \mathbf{f})(\mathbf{f} 12):\left(\mathbf{T}_{1} \rightarrow \mathbf{T}_{2}\right)\right. \\
\mathbf{T}_{1}=\left(\text { int } \rightarrow \mathbf{T}_{2}\right)
\end{gathered}
$$

simplified: ((int $\left.\left.\rightarrow \mathbf{T}_{\mathbf{2}}\right) \rightarrow \mathbf{T}_{\mathbf{2}}\right)$

$$
\begin{aligned}
& \text { Typing Example: Identity } \\
& \frac{\left\{\mathbf{x}: \mathbf{T}_{1}\right\} \vdash \mathbf{x}: \mathbf{T}_{1}}{\left\} \vdash \operatorname{proc}(? \mathbf{x}) \mathbf{x}:\left(\mathbf{T}_{1} \rightarrow \mathbf{T}_{1}\right)\right.} \\
& \text { no simplification possible }
\end{aligned}
$$

Typing Example: Identity Applied

$$
\begin{aligned}
& \frac{\left\{\mathbf{x}: \mathbf{T}_{1}\right\} \vdash \mathbf{x}: \mathbf{T}_{1}}{\left\} \vdash \text { proc }(? \mathbf{x}) \mathbf{x}:\left(\mathbf{T}_{1} \rightarrow \mathbf{T}_{1}\right)\right.} \quad\} \vdash \text { false :bool } \\
& \left\} \vdash(\mathbf{p r o c}(? \mathbf{x}) \mathbf{x} \text { false }): \mathbf{T}_{2}\right. \\
& \left(\mathbf{T}_{1} \rightarrow \mathbf{T}_{1}\right)=\left(\text { bool } \rightarrow \mathbf{T}_{2}\right)
\end{aligned}
$$

simplfied: bool

Typing Example: Function-Making Function
$\frac{\left\{\mathbf{x}: \mathbf{T}_{1}, \mathbf{y}: \mathbf{T}_{2}\right\} \vdash \mathbf{x}: \mathbf{T}_{1}}{\left\{\mathbf{x}: \mathbf{T}_{1}\right\} \vdash \operatorname{proc}(? \mathbf{y}) \mathbf{x}:\left(\mathbf{T}_{2} \rightarrow \mathbf{T}_{1}\right)}$
$\left\} \vdash \operatorname{proc}(? \mathbf{x}) \operatorname{proc}(? \mathbf{y}) \mathbf{x}:\left(\mathbf{T}_{1} \rightarrow\left(\mathbf{T}_{\mathbf{2}} \rightarrow \mathbf{T}_{1}\right)\right)\right.$
no simplification possible

Infinite Loops

What if we extend the language with a special Ω expression that loops forever?

- if true then 1 else $\Omega \rightarrow \rightarrow 1$
- if false then 1 else $\Omega \rightarrow \rightarrow$ loops forever
- if true then proc(? $\mathbf{x}) \mathbf{x}$ else $\Omega \rightarrow \rightarrow \operatorname{proc}(? \mathbf{x}) \mathbf{x}$

What is the type of Ω ?

Typing Example: Infinite Loop

$$
\left\} \vdash \text { true : bool } \quad \left\} \vdash 1 \text { : int } \quad \left\} \vdash \Omega: \mathbf{T}_{1}\right.\right.\right.
$$

$\} \vdash$ if true then 1 else Ω : int

$$
\mathbf{T}_{1}=\text { int }
$$

- Create a new type variable for each Ω
- New type variable for each ?
- New type variable for each application
- New type variable for each Ω
- Checking a type equation can force a type variable to match a certain type

The Universe of Programs

- The goal of type-checking is to rule out bad programs

$$
+(1, \text { true })
$$

- Unfortunately, some good programs will be ruled out, too $+(1$, if true then 1 else false)

The Universe of Programs
programs that run forever

- Every program falls into one of three categories

The Universe of Programs

programs that run forever

programs that crash

- The idea is that a type checker rules out the error category
$\xrightarrow{ }$

programs that
crash on types
- Still, a type checker always rules out a certain class of errors
- Division by 0 is a variant error

The Universe of Programs

- But a type checker for most languages will allow some errors!

$1 / 0 \rightarrow \rightarrow$ divide by zero

The Universe of Programs

- Our language happens to have no variant errors, so the type checker rules out all errors

The Universe of Programs
programs that run
forever

programs that crash

- In fact, if we get rid of letrec, then every well-typed program terminates with a value!
Intution for Termination

But we've already seen that we can't type self-application:

no type: \mathbf{T}_{1} can't be ($\mathbf{T}_{1} \rightarrow \mathbf{T}_{2}$)

The only way around this restriction is to restore letrec or extend the type language.
(Extending the type language in this direction is beyond the scope of the course.)

Recall that to get rid of letrec

```
letrec int sum = proc(int x)
            if zero?(x)
            then 0
            else +(x,(sum -(x, 1)))
in (sum 10)
```

we can use self-application:

```
let sum = proc(int x, ? sum)
            if zero?(x)
                then 0
            else +(\mathbf{x,((sum sum) -(x,1)))}
in ((sum sum) 10)
```


The Universe of Programs

- There are other ways that we'd like to expand the set of well-formed programs

- There are other ways that we'd like to expand the set of well-formed programs
programs that run
forever

programs that crash

Polymorphism

$$
\begin{array}{c|r}
\operatorname{proc}\left(\boldsymbol{?}_{1} \mathbf{y}\right) \mathbf{y} \\
\hline & \mathbf{T}_{1} \\
\left(\mathbf{T}_{1} \rightarrow \mathbf{T}_{1}\right)
\end{array}
$$

let $\mathbf{f}=\operatorname{proc}\left(?_{1} \mathbf{y}\right) \mathbf{y}:\left(\mathbf{T}_{1} \rightarrow \mathbf{T}_{1}\right)$ in if (f true) then ($\mathbf{f} 1$) else ($\mathbf{f} 0$)
$\left(\mathbf{T}_{1} \rightarrow \mathbf{T}_{1}\right) \quad\left(\mathbf{T}_{1} \rightarrow \mathbf{T}_{1}\right) \quad\left(\mathbf{T}_{1} \rightarrow \mathbf{T}_{1}\right)$
no type: \mathbf{T}_{1} can't be both bool and int

- New rule: when type-checking the use of a let-bound variable, create fresh versions of unconstrained type variables

```
let \(\mathbf{f}=\operatorname{proc}\left(?_{1} \mathbf{y}\right) \mathbf{y}:\left(\mathbf{T}_{1} \rightarrow \mathbf{T}_{1}\right)\)
    in if ( \(f\) true) then ( \(f 1\) ) else ( \(\mathbf{f} 0\) )
\(\left(\mathbf{T}_{2} \rightarrow \mathbf{T}_{2}\right) \quad\left(\mathbf{T}_{3} \rightarrow \mathbf{T}_{3}\right) \quad\left(\mathbf{T}_{4} \rightarrow \mathbf{T}_{4}\right)\)
int
```

 \(\mathrm{T}_{2}=\) bool \(\quad \mathrm{T}_{3}=\) int \(\quad \mathrm{T}_{4}=\) int
 - This rule is called let-based polymorphism

