
{ }   : pumpkin { }   : face

{ }   : jack-o-lantern

Typing Example: Number

{ }  5 : int

Each

E  e : T

is a call to type-of-expression with arguments e and E
where the result is T

Typing Example: Sum

{ }  1 : int { }  2 : int
{ }  +(1,2) : int

Actually, the type checker treats primitives like functions, but
it could be checked directly as above

Since the toy language has only single-argument functions,
but it has two binary primitives, the above strategy is a good
one for HW8

Typing Example: Function

{ x : int }  x : int { x : int }  2 : int
{ x : int }  +(x,2) : int

{ }  proc(int x) +(x,2) : (int → int)
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Typing Example: Function Call

{ x : int }  x : int
{ }  proc(int x)x : (int → int) { }  12 : int

{ }  (proc(int x)x  12) : T2

(int → int) = (int → T2)

simplified: int

Create a new type variable for each application

We’ll see why this is convenient soon...

Typing Example: ? Argument

{ x : T1 }  x : T1 { x : T1 }  2 : int

{ x : T1 }  +(x,2) : int

{ }  proc(? x) +(x,2) : (T1 → int)

T1 = int

simplified: (int → int)

Create a new type variable for each ?

Typing Example: ? Argument

{ x : T1 }  x : T1 { x : T1 }  2 : int { x : T1 }  3 : int

{ x : T1 }  if x then 2 else 3 : int

{ }  proc(? x) if x then 2 else 3 : (T1 → int)

T1 = bool

simplified: (bool → int)

Typing Example: Function-Calling Function

{ f : T1 }  f : T1 { f : T1 }  12 : int

{ f : T1 }  (f 12) : T2

{ }  proc(? f)(f 12) : (T1 → T2)

T1 = (int → T2)

simplified: ((int → T2) → T2)
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Typing Example: Identity

{ x : T1 }  x : T1

{ }  proc(? x) x : (T1 → T1)

no simplification possible

Typing Example: Identity Applied

{ x : T1 }  x : T1

{ }  proc(? x) x : (T1 → T1) { }  false : bool

{ }  (proc(? x)x  false) : T2

(T1 → T1) = (bool → T2)

simplfied: bool

Typing Example: Function-Making Function

{ x : T1, y : T2 }  x : T1

{ x : T1 }  proc(? y) x : (T2 → T1)

{ }  proc(? x) proc(? y) x : (T1 → (T2 → T1))

no simplification possible

Infinite Loops

What if we extend the language with a special Ω expression that
loops forever?

if true then 1 else Ω  →→  1

if false then 1 else Ω  →→  loops forever

if true then proc(? x)x else Ω  →→  proc(? x)x

What is the type of Ω ?
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Typing Example: Infinite Loop

{ }  true : bool { }  1 : int { }  Ω : T1

{ }  if true then 1 else Ω : int

T1 = int

Create a new type variable for each Ω

Type Inference Summary

New type variable for each ?

New type variable for each application

New type variable for each Ω

Checking a type equation can force a type variable to match
a certain type

The Universe of Programs

The goal of type-checking is to rule out bad programs

+(1, true)

Unfortunately, some good programs will be ruled out, too

+(1, if true then 1 else false)

The Universe of Programs

programs that run
forever

programs that
crash

programs that
produce values

Every program falls into one of three categories
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The Universe of Programs

programs that run
forever

programs that
crash

programs that
produce values

well-typed
programs

The idea is that a type checker rules out the error category

The Universe of Programs

programs that run
forever

programs that
crash

programs that
produce values

well-typed
programs

But a type checker for most languages will allow some errors!

1 / 0 →→ divide by zero

The Universe of Programs

programs that run
forever

programs that
crash on variants

programs that
crash on types

programs that
produce values

well-typed
programs

Still, a type checker always rules out a certain class of errors

Division by 0 is a variant error

The Universe of Programs

programs that run
forever

programs that
crash

programs that
produce values

well-typed
programs

Our language happens to have no variant errors, so the type
checker rules out all errors
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The Universe of Programs

programs that run
forever

programs that
crash

programs that
produce values

well-typed
programs

In fact, if we get rid of letrec, then every well-typed program
terminates with a value!

Intution for Termination

Recall that to get rid of letrec

letrec int sum = proc(int x)
                   if zero?(x)
                      then 0
                      else +(x,(sum -(x, 1)))
  in (sum 10)

we can use self-application:

let sum = proc(int x, ? sum)
            if zero?(x)
               then 0
               else +(x,((sum sum) -(x, 1)))
  in ((sum sum) 10)

Intution for Termination

But we’ve already seen that we can’t type self-application:

(x x)proc(?1 x)

T1 T1

no type: T1 can’t be (T1 → T2)

The only way around this restriction is to restore letrec or
extend the type language.

(Extending the type language in this direction is beyond the
scope of the course.)

The Universe of Programs

There are other ways that we’d like to expand the set of
well-formed programs

programs that run
forever

programs that
crash

programs that
produce values

well-typed
programs
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The Universe of Programs

There are other ways that we’d like to expand the set of
well-formed programs

programs that run
forever

programs that
crash

programs that
produce values

well-typed
programs

Adjusting the type rules can allow more programs

Polymorphism

proc(?1 y)y

T1

(T1 → T1)

let f = proc(?1 y)y : (T1 → T1)
if (f true) then (f 1) else (f 0) in 

(T1 → T1) (T1 → T1) (T1 → T1)

no type: T1 can’t be both bool and int

Polymorphism

New rule: when type-checking the use of a let-bound variable,
create fresh versions of unconstrained type variables

let f = proc(?1 y)y : (T1 → T1)
if (f true) then (f 1) else (f 0) in 

(T2 → T2) (T3 → T3) (T4 → T4)

int

T2 = bool T3 = int T4 = int

This rule is called let-based polymorphism

112-124


