
Lazy Evaluation of Function Arguments

let f = proc(x)0
 in (f +(1,+(2,+(3,+(4,+(5,6))))))

The computed 21 is never used.

What if we were lazy about computing function arguments (in
case they aren’t used)?

Lazy Evaluation of Function Arguments

One way to laziness:

let f = proc(xthunk)0
 in (f proc()+(1,+(2,+(3,+(4,+(5,6))))))

let f = proc(xthunk)-((xthunk), 7)
 in (f proc()+(1,+(2,+(3,+(4,+(5,6))))))

By using proc to delay evaluation, we can avoid unnecessary
computation.

How about making the language compute function arguments
lazily in all applications?

Evaluation with Lazy Arguments

let f = proc(x)0
 in (f +(1,2))

Evaluation with Lazy Arguments

f x 0

let f = proc(x)0
 in (f +(1,2))

1-9

Evaluation with Lazy Arguments

f x 0

+(1,2)

Application creates a new kind
of green box, with two slots: a
thunk

let f = proc(x)0
 in (f +(1,2))

Evaluation with Lazy Arguments

f x 0

x +(1,2)

let f = proc(x)0
 in (f +(1,2))

Evaluation with Lazy Arguments

f x 0

x +(1,2)

The result is 0

let f = proc(x)0
 in (f +(1,2))

Evaluation with Lazy Arguments

let f = proc(x)-(x,1)
 in (f +(1,2))

10-13

Evaluation with Lazy Arguments

f x -(x,1)

let f = proc(x)-(x,1)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,1)

+(1,2)

let f = proc(x)-(x,1)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,1)

x +(1,2)

lookup of x...

let f = proc(x)-(x,1)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,1)

x +(1,2)

... forces evaluation of the thunk

let f = proc(x)-(x,1)
 in (f +(1,2))

14-17

Evaluation with Lazy Arguments

f x -(x,1)

x +(1,2)

so 3 is the value of x

let f = proc(x)-(x,1)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,1)

x +(1,2)

The result is 2

let f = proc(x)-(x,1)
 in (f +(1,2))

Evaluation with Lazy Arguments

Lazy expression that needs its
environment...

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

18-21

Evaluation with Lazy Arguments

f x -(x,1)

y 7

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y 7

+(1,y)

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y 7

x +(1,y)

Evaluation of x forces the
thunk...

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y 7

x +(1,y)
Triggering evaluation with the
thunk’s enviornment, not the
current one

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

22-25

Evaluation with Lazy Arguments

f x -(x,1)

y 7

x +(1,y)

(The result will be 7)

let f = proc(x)-(x,1)
 in let y = 7
 in (f +(1,y))

Evaluation with Lazy Arguments

What if the right-hand side for y
is an expression, instead of a
value?

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y +(3,4)

Added thunk for the value of y

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

26-29

Evaluation with Lazy Arguments

f x -(x,1)

y +(3,4)

+(1,y)

Another thunk for the argument
of f

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y +(3,4)

x +(1,y)

Evaluation of x forces a thunk...

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y +(3,4)

x +(1,y)

which, in turn, forces another
thunk...

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

Evaluation with Lazy Arguments

f x -(x,1)

y +(3,4)

x +(1,y)

and so on (to get 7)

let f = proc(x)-(x,1)
 in let y = +(3,4)
 in (f +(1,y))

30-33

Implementing Lazy Evaluation

Interpreter changes:

Change eval-fun-rands to create thunks

Change variable lookup to force thunk evaluation

(Implement in DrScheme)

Call-by-Name and Call-by-Need

The lazy strategy we just implemented is call-by-name

Advantage: unneeded arguments are not computed

Disadvantage: needed arguments may be computed many
times

let f = proc(x)+(x,+(x,x))
 in (f +(1,+(2,+(3,+(4,+(5,6))))))

Best of both worlds: call-by-need

Evaluates each lazy expression once, then remembers the
result

Evaluation with Lazy Arguments

Start as before...

let f = proc(x)-(x,x)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,x)

let f = proc(x)-(x,x)
 in (f +(1,2))

34-39

Evaluation with Lazy Arguments

f x -(x,x)

+(1,2)

let f = proc(x)-(x,x)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,x)

x +(1,2)

lookup of x...

let f = proc(x)-(x,x)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,x)

x +(1,2)

... forces evaluation of the thunk
to get 3

let f = proc(x)-(x,x)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,x)

x 3

so change x to 3 --- which is the
essence of call-by-need

let f = proc(x)-(x,x)
 in (f +(1,2))

40-43

Evaluation with Lazy Arguments

f x -(x,x)

x 3

lookup of x again gets 3

let f = proc(x)-(x,x)
 in (f +(1,2))

Evaluation with Lazy Arguments

f x -(x,x)

x 3

(The result is 0)

let f = proc(x)-(x,1)
 in (f +(1,2))

Implementing Call-by-Need

Interpreter changes:

Change variable lookup to replace thunks in locations with
their values

(Implement in DrScheme)

Calling Convention Terminology

Call-by-name and call-by-need = lazy evaluation

Call-by-value = eager evaluation

Call-by-reference can augment either

44-47

Popular Calling-Convention Choices

Most languages are call-by-value

C, C++, Pascal, Scheme, Java, ML, Smalltalk...

Some provide call-by-reference

C++, Pascal

A few are call-by-need

Haskell

Practically no languages are call-by-name

Popularity of Laziness

Why don’t more languages provide lazy evaluation?

Disadvantage: evaluation order is not obvious

let x = 0 f = ...
 in let y = set x=1
 z = set x=2
 in { (f y z) ; x }

Popularity of Laziness

Why do some languages provide lazy evaluation?

Evaluation order does not matter if the language has no set
form

Such languages are called purely functional

Note: call-by-reference is meaningless in a purely
functional language

A language with set can be called imperative

Laziness and Eagerness

Even in a purely functional language, lazy and eager evaluation
can produce different results

let f = proc(x)0
 in (f [loop forever])

Eager answer: none

Lazy answer: 0

48-53

