
Lexical Addresses

As we saw in the last lecture, the expression

let x = 1 y = 2
 in let f = proc (x) +(x, y)
 in (f x)

might be compiled to

let = 1 = 2
 in let = proc (_) +(<0,0>, <1,1>)
 in (<0,0> <1,0>)

<n, m> means: n frames up in the environment, at position m

How can we compute <n, m> for every bound variable without
running the code?

Computing Lexical Addresses

What creates a new frame?

let, letrec, and (application of) proc

So, to compute the n in <n, m>, count the number of
enclosing let, letrec, and proc keywords between the bound
variable and its binding

The m in <n, m> is simply the variable’s position in its binding
set

Computing Lexical Addresses

Best visualized as countours that separate environment
extension from the expressions that use it

proc (x) +(x, 7)

Count contour crossings to get n + 1

Cross 1 contour from bound x to binding x, so first part of
address is 0

Full address is <0, 0>

Computing Lexical Addresses

Best visualized as countours that separate environment
extension from the expressions that use it

proc (y) proc (x, z) +(x, -(y, z))

Bound x: <0, 0>

Bound y: <1, 0>

Bound z: <0, 1>

1-8

Computing Lexical Addresses

Best visualized as countours that separate environment
extension from the expressions that use it

proc (y) proc (x, z) +(x, -(y, z))

In general:

proc (<id>1, ..., <id>n) <expr>

Computing Lexical Addresses

Best visualized as countours that separate environment
extension from the expressions that use it

let x = 5
 in x

In general:

let <id>1 = <expr>1

... = ...
<id>n = <expr>n

 in <expr>

Computing Lexical Addresses

Best visualized as countours that separate environment
extension from the expressions that use it

let x = 5
 in x

Bound x: <0, 0>

Computing Lexical Addresses

Best visualized as countours that separate environment
extension from the expressions that use it

let x = 5
y = 7

 in let x = x
 in +(x, y)

9-12

Computing Lexical Addresses

Best visualized as countours that separate environment
extension from the expressions that use it

let x = 5
y = 7

 in let x = x
 in +(x, y)

Bound x: <0, 0>

Bound x: <0, 0>

Bound y: <1, 1>

Computing Lexical Addresses

Best visualized as countours that separate environment
extension from the expressions that use it

letrec f =
g =

proc (x) +(x, (g 7))
proc (z) -(z, 2)

 in (f 10)

In general:

letrec <id>1 =
... =
<id>n =

<expr>1

...
<expr>n

 in <expr>

Computing Lexical Addresses

Best visualized as countours that separate environment
extension from the expressions that use it

letrec f =
g =

proc (x) +(x, (g 7))
proc (z) -(z, 2)

 in (f 10)

Bound x: <0, 0>

Bound g: <1, 1>

Bound z: <0, 0>

Bound f: <0, 0>

Lexical Addresses are Static

The contour approach to computing lexical addresses works
because they are static

That’s why we can pre-compute them in a compiler

13-22

Source Language for Compilation

<expr> ::= <num>
::= <id>
::= <prim> ({ <expr> }*(,))
::= let { <id> = <expr> }* in <expr>
::= proc ({ <id> }*(,)) <expr>
::= (<expr> <expr>*)

concrete

Source Language for Compilation

<expr> ::= (lit-exp <num>)
::= (var-exp <symbol>)
::= (primapp-exp <prim> (list <expr>*))
::= (let-exp (list <symbol>*) (list <expr>*) <expr>)
::= (proc-exp (list <symbol>*) <expr>)
::= (app-exp <expr> (list <expr>*))

abstract

Target Language for Compilation

<cexpr> ::= (lit-cexp <num>)
::= (var-cexp <num> <num>)
::= (primapp-cexp <prim> (list <cexpr>*))
::= (let-cexp (list <cexpr>*) <cexpr>)
::= (proc-cexp <cexpr>)
::= (app-cexp <cexpr> (list <cexpr>*))

abstract

(no use for concrete)

For implementation: declare a cexpression datatype with
define-datatype

Compilation Function

compile-expression : expr -> cexpr

Mostly trival: create a <cexpr> corresponding to the input
<expr>

Interesting case: var-exp

Use an environment, almost like evaluation

Key difference #1: instead of apply-env, we need
lexical-address-in-env

Key difference #2: no closures; instead, compile a proc
body immediately when we encounter the proc 23-31

Evaluation Function for the Target Language

eval-cexpression is similar to eval-expression,
except:

The names in the environment do not matter

Use apply-env-to-lexical-address instead of apply-env

Implementation

(implement in DrScheme)

32-34

