CS3520
Programming Languages Concepts

Instructor: Matthew Flatt

Programming Languages Concepts

This course teaches concepts in two ways:
® By implementing interpreters

© new concept => extend interpreter
® By using Scheme

© we assume that you don'’t already know Scheme

Course Details

http://ww. cs. ut ah. edu/ cl asses/ cs3520/

Bootstrapping Problem

® We'll learn about languages by writing interpreters in Scheme
® We'll learn about Scheme...
by writing an interpreter...

in Seheme set theory

® More specifically, we’'ll define Scheme as an extension of algebra

Algebra is a programming language?

Algebra as a Programming Language

® Algebra has a grammar:
O (1 +2)is alegal expression

O (1 ++) is not a legal expression

® Algebra has rules for evaluation:
©O@1+2)=3

O f(17)=(17+3)=20 if f(x)=(x +3)

A Grammar for Algebra Programs

The grammar in BNF (Backus-Naur Form; EoPL sec 1.1.2):

<prog> .= <defn>* <expr>
<defn> 1= <id>(<id>) =<expr>
<expr> = (<expr>+<expr>)

(<expr> — <expr>)
<id>(<expr>)

n=o<id> | <n>
<id> ;= avariable name: f, x, vy, z, ...
<n> = anumber: 1,42, 17, ...

® Each meta-variable, such as <prog>, defines a set

Using a BNF Grammar

<id> := avariable name:f,x,vy,z, ...

<n> = anumber: 1,42, 17, ...
® The set <id> is the set of all variable names
® The set <n> is the set of all numbers
® To make an example member of <n>, simply pick an element from the

set
10<n>

198 00 <n>

Using a BNF Grammar

(<expr> + <expr>)
(<expr> - <expr>)
= <id>(<expr>)
D= o<id> | <n>

<expr>

® The set <expr> is defined in terms of other sets

13- 20

Using a BNF Grammar

<expr> = (<expr>+<expr>)
n= (<expr> —<expr>)
<id>(<expr>)

Using a BNF Grammar

(<expr> + <expr>)
(<expr> - <expr>)
<id>(<expr>)

<expr>

D= <id> | <n>

® To make an example <expr>:

O choose one case in the grammar
O pick an example for each meta-variable

f O <id> 7 0 <expr>
© combine the examples with literal text

f(7) O <expr>

n= <id> | <n>

® To make an example <expr>:

O choose one case in the grammar

O pick an example for each meta-variable

f O <id> f(7) O <expr>

© combine the examples with literal text

f(f(7)) O <expr>

: <id> | <n> : <id> | <n> «
® To make an example <expr>: ® To make an example <expr>:
O choose one case in the grammar O choose one case in the grammar
O pick an example for each meta-variable O pick an example for each meta-variable
O combine the examples with literal text 7 0<n>
© combine the examples with literal text
7 [0 <expr>
Using a BNF Grammar Using a BNF Grammar
<expr> = (<expr>+ <expr>) <expr> = (<expr>+<expr>)
n= 0 (<expr> —<expr>) (<expr> — <expr>)
<id>(<expr>) « <id>(<expr>) «

21-30

Using a BNF Grammar

<prog> := <defn>* <expr>
<defn> 1= <id>(<id>) = <expr>
f(x) =(x + 1) O <defn>

® To make a <prog> pick some number of <defn>s

(x +y) O <prog>

f(x)=(x+1)
g(y) =f((y -2)) O<prog>
a(7)

Demonstrating Set Membership

® \We can run the element-generation process in reverse to prove that
some item is a member of a set

® Such proofs have a standard tree format:

sub-claim to prove sub-claim to prove

claim to prove

® Immediate membership claims serve as leaves on the tree:

7 0<n>

Demonstrating Set Membership

® \We can run the element-generation process in reverse to prove that
some item is a member of a set

® Such proofs have a standard tree format:

sub-claim to prove sub-claim to prove

claim to prove

® Immediate membership claims serve as leaves on the tree:

f O <id>

Demonstrating Set Membership

® \We can run the element-generation process in reverse to prove that
some item is a member of a set

® Such proofs have a standard tree format:

sub-claim to prove sub-claim to prove

claim to prove

® Other membership claims generate branches in the tree:

7 0<n>
7 [<expr>

31-37

Demonstrating Set Membership

® \We can run the element-generation process in reverse to prove that
some item is a member of a set

® Such proofs have a standard tree format:

sub-claim to prove sub-claim to prove
claim to prove

® Other membership claims generate branches in the tree:

7 0<n>
f O <id> 7 O <expr>
f(7) O <expr>

The proof tree’s shape is driven entirely by the grammar

Demonstrating Set Membership: Example

f(7) O <expr>

(<expr> + <expr>)
(<expr> — <expr>)

= <id>(<expr>) «
n= <id> | <n>

<expr>

® Two meta-variables on the left means two sub-trees:
© One for f O <id>

© One for 7 O <expr>

Demonstrating Set Membership: Example

f O <id> 7 O <expr>
f(7) O <expr>
<id> := avariable name:f,x,vy,z, ...
<expr> = (<expr>+ <expr>)

(<expr> — <expr>)
n= <id>(<expr>)
= <id> | <n> «

® { [] <id> is immediate

® 7 [<expr> has one meta-variable, so one subtree

Demonstrating Set Membership: Example

7 0<n>
f O <id> 7 0 <expr>
f(7) O <expr>

<n> := anumber: 1,42, 17, ...

® 7 [0 <n> is immediate, so the proof is complete

38-45

Demonstrating Set Membership: Another Example

f(x) =(x+1)
g(y) =f((y -2)) 0 <prog>
9(7)

<prog> 1= <defn>* <expr>

® Three meta-variables (after expanding *) means three sub-trees:
O One for f(x) = (x + 1) O <defn>
© One for g(y) =f((y — 2)) O <defn>

© One for g(7) O <expr>

Demonstrating Set Membership: Example 2

a(y) =f((y - 2)) O <defn>
f(x) = (x + 1) O <defn> g(7) O <expr>

f(x) = (x + 1)
g(y) =f(ly -2)) 0 <prog>
a(7)

® Each sub-tree can be proved separately

® We'll prove only the first sub-tree for now

Demonstrating Set Membership: Example 2

f(x) =(x +1) O <defn>

<defn> := <id>(<id>) = <expr>

® Three meta-variables, three sub-trees

Demonstrating Set Membership: Example 2

f O <id> x O <id> (x +1) O <expr>
f(x) = (x +1) O <defn>

® The first two are immediate, the last requires work:

(<expr>+<expr>) 4
(<expr> — <expr>)

n= <id>(<expr>)

D= o<id> | <n>

<expr>

46- 54

Demonstrating Set Membership: Example 2

Final tree:
x O <id> 10<n>
x O <expr> 1 0 <expr>
f O <id> x O <id> (x +1) O <expr>

f(x) = (x +1) O <defn>

® This was just one of three sub-trees for the original 00 <prog> proof...

Algebra as a Programming Language

® Algebra has a grammar:
O (1 +2)is alegal expression

O (1 ++) is not a legal expression

® Algebra has rules for evaluation:
©@1+2)=3

O f(17)=(17+3)=20 if f(x)=(x +3)

Evaluation Function

® An evaluation function, -, takes a single evaluation step
® |t maps programs to programs:

2+(7-4) - ((2+3)

Evaluation Function

® An evaluation function, -, takes a single evaluation step
® |t maps programs to programs:

f(x) =(x+1) f(x)=(x+1)
2+@7-4) ~ (2+3)

55-58

Evaluation Function

® An evaluation function, -, takes a single evaluation step

® |t maps programs to programs:

fx)=(x +1) f(x)=(x +1)
g)=(-1) 9= -1)
h(z) = f(2) h(z) =f(z)

(2 +f(13)) (2+(13+1))

Evaluation Function

® Apply - repeatedly to obtain a result:

f(x)=(x +1) f(x) =(x +1)
2+@7-4) ~ (2+3)
f(x)=(x+1) f(x)=(x +1)
(2 +3) 75

Evaluation Function
® The - function is defined by a set of pattern-matching rules:

f(x)=(x +1) f(x) =(x +1)
2+(@7-4) ~ (2+3)

due to the pattern rule

o (7-4) . & 3.

Evaluation Function
® The - function is defined by a set of pattern-matching rules:
f(x) =(x +1) f(x) =(x +1)
(2 +(13)) T (2+(13+1))

due to the pattern rule

... <id>,(<id>,) =<expr>, ...
... <id>y(<expr>,) ...

.. <id>y(<id>,) = <expr>; ...
... <expr>; ...

where <expr>; is <expr>;, with <id>, replaced by <expr>,

59- 63

Pattern-Matching Rules for Evaluation

® Rulel
... <id>,(<id>,) = <expr>; <id>y(<id>,) = <expr>; ...
... <id>,(<expr>,) ... T <expr>;...

where <expr>; is <expr>, with <id>, replaced by <expr>,

® Rules 2 -

.. (0+0).. - ...0.. ..(0-0)... = ..0...

W (140) . o e (1-0) 0 = il

W (0+1) . o e (0=1) .~ -1

W (240) . o 2. W (2-0) 0 2.
etc. etc.

Homework

® Some evaluations
® Some membership proofs
® See the web page for details

® Due next Tuesday, August 28, 11:59 PM

Where is This Going?

Next time:

® Shift syntax slightly to match that of Scheme
® Add new clauses to the expression grammar
® Add new evaluation rules

Current goal is to learn Scheme, but we'll use algebraic techniques all
semester

64- 68

