

® Open book
® Open notes
® Everything through today

~ lexical scope, environments, closures, evaluation, assignment,
parameter-passing mechanisms, types

® Example questions on the schedule page

New construct
ref (x)

setref (El, E2)

let x =0
In let y = ref(x)
In let d = setref(y,
I n X

Result:

2)

C equivalent

(*E1

&X

E2,

1)

HW9

let x =0
In let y = ref(x)
in let d = setref(y, true)
I n X

Result: true

But should it be allowed?

let x =0
In let y = ref(x)
inlet d=1f ...
then 1
el se setref(y, true)
In +(x, 0)

Might crash.

Solution: only allow assignments that do not change a variable’s type

HW9

let x =0 : int
Iinlet y =ref(x) : (refto int)
In let d = setref(y, 1)
In +(x, 0)

Ok

let x =0 : int
Iinlet y =ref(x) : (refto int)
In let d = setref(y, true)
In +(x, 0)
Not ok

® First argument of set r ef must have type (refto T)

® Second argument of set r ef must have type T, for the same T

Back to our regularly scheduled programming...

4
o0

squash

Type-Checking Expressions

® \What is the value of the following expression?

proc(x)+(x, 1)

® Answer: Yet another trick question; it's not an expression in our typed
language, because the argument type is missing

® But, clearly, the answer shouldbe (i nt -> int)

® Type inference is the process of inserting type annotations where the
programmer omits them.

® We'll use explicit question marks, to make it clear where types are
being omitted.

proc (?, X)+(x,1)

Type Inference

proc(?, x) +(x, 1)

T, | nt
Int T,=1nt
int -> int

proc(?, x)if true then 1 else x

boo1 | nt T,

Int ->int T,=int

proc(?, X)if x then 1 else x
T, | nt T,

no type: T, can’'t be both bool and i nt

Type Inference
proc(?,y)y
T
T1 -> T1

(proc(?, y)y proc(?, x)+(x, 1))

T
/

T, -> T, Ilnt -> I nt

int -> int
T,=1nt -> Int

proc(?. y)(y 7)

T, | nt
T2 T]_:lnt -> T2

(lnt -> Tz) -> T2

Type Inference

proc(?, x)(x X)
le T,

no type: T,can'tbe T, -> ...

® T,can’'tbei nt

® T, can’t be bool

® Suppose T,isT, -> T,
~ T, must be T,

~ So we won’t get anywhere!

® Extendt ype datatype with t var -t ype variant
(defi ne-dat atype type type?
(tvar-type
(seri al -nunber i nteger?)
(contai ner vector?)))
® Create a new type variable record for each ?
~ Initial container value is “don’t know”, ’ ()

® Create a new type variable record for each application

® Change check- equal -t ype! to read and set type variable
containers

The Universe of Programs

® The goal of type-checking is to rule out bad programs
+(1, true)
® Unfortunately, some good programs will be ruled out, too

+(1, If true then 1 else fal se)

The Universe of Programs

programs that run
forever

programs that
produce values

programs that
crash

® Every program falls into one of three categories

The Universe of Programs

programs that run
forever

programs that
produce values

well-typed
programs

programs that
crash

® The idea is that a type checker rules out the error category

The Universe of Programs

programs that run
forever

programs that
produce values

well-typed
programs

programs that
crash

® But a type checker for most languages will allow some errors!

1/ 0 0O divide by zero

The Universe of Programs

programs that run
forever

programs that
produce values

well-typed
programs

programs that
crash on types

® Still, a type checker always rules out a certain class of errors

~ Division by 0 is a variant error

The Universe of Programs

programs that run
forever

programs that
produce values

well-typed
programs

programs that
crash

® Our language happens to have no variant errors, so the type checker
rules out all errors

The Universe of Programs

programs that run
forever

programs that
produce values

well-typed
programs

programs that
crash

® |n fact, if we get rid of | et r ec, then every well-typed program
terminates with a value!

Recall thatto getrid of | et rec

letrec int sum = proc(int Xx)
| f zero?(x)
then O
el se +(x,(sum-(x, 1)))
In (sum 10)

we can use self-application:

|l et sum = proc(int x, ? sum
| f zero?(x)
then O
el se +(x,((sumsum -(x, 1)))
In ((sum sum 10)

Intution for Termination
But we've already seen that we can’t type self-application:
proc(?, x)(x X)
T, ; T,

no type: T,can'tbe T, -> ...

The only way around this restriction is to restore | et r ec or extend the
type language.

(Extending the type language in this direction is beyond the scope of the
course.)

The Universe of Programs

® There are other ways that we’d like to expand the set of well-formed
programs

programs that run
forever

programs that
produce values

well-typed
programs

programs that
crash

The Universe of Programs

® There are other ways that we’d like to expand the set of well-formed
programs

programs that run
forever

programs that
produce values

HTTI -
o
e
NN SN

well-typed
programs

programs that
crash

® Adjusting the type rules can allow more programs

Polymorphism

proc(?, y)y
T,
T1 - > T1

let f = prog(?,y)y : T, -> T,
inif (f true) then (f 1) else (f 0)

T1'> Tl T1'> Tl T1'> Tl

no type: T, can’'t be both bool and i nt

Polymorphism

® New rule: when type-checking the use of a let-bound variable, create
fresh versions of unconstrained type variables

let f = prog(?,y)y : T, -> T,
inif (f true) then (f 1) else (f 0)

T2'> T2 T3'> T3 T4'> T4

| nt

T,=bool T;=int T,=i1nt

® This rule is called let-based polymorphism

