
Quiz

Question #1: What is the value of the following expression?

+(1,1)

Wrong answer: 0.

Wrong answer: 42.

Answer: 2.

Quiz

Question #2: What is the value of the following expression?

+ proc 8

Wrong answer: error.

Answer: Trick question! + proc 8 is not an expression.

Quiz

Question #3: Is the following an expression?

add1(1, 7)

Wrong answer: No.

Answer: Yes (according to our grammar).

Quiz

Question #4: What is the value of the following expression?

add1(1, 7)

Answer: 2 (according to our interpreter).

But no real language (e,g., C++) would accept add1(1, 7).

Let’s agree to call add1(1, 7) an ill-formed expression because
add1 should be used with only one argument.

Let’s agree to never evaluate ill-formed expressions.

Quiz

Question #5: What is the value of the following expression?

add1(1, 7)

Answer: None - the expression is ill-formed.

Quiz

Question #6: Is the following a well-formed expression?

+(proc(x)x, 5)

Answer: Yes.

Quiz

Question #7: What is the value of the following expression?

+(proc(x)x, 5)

Answer: None - it produces an error:

+: expects type <number> as 1st argument,
given: (closure ((cbv-var x)) (var-exp x)
(empty-env-record)); other arguments were: 5

Let’s agree that a proc expression cannot be inside a + form.

Quiz

Question #8: Is the following a well-formed expression?

+(proc(x)x, 5)

Answer: No.

Quiz

Question #9: Is the following a well-formed expression?

+((proc(x)x 7), 5)

Answer: Depends on what we meant by inside in our most recent
agreement.

Anywhere inside - No.

Immediately inside - Yes.

Since our intrepreter produces 12, and since that result makes sense,
let’s agree on immediately inside.

Quiz

Question #10: Is the following a well-formed expression?

+((proc(x)x true), 5)

Answer: Yes, but we don’t want it to be!

Quiz

Question #11: Is it possible to define well-formed (as a decideable
property) so that we reject all expressions that produce errors?

Answer: Yes, obviously: reject all expressions!

Quiz

Question #12: Is it possible to define well-formed (as a decideable
property) so that we reject only expressions that produce errors?

Answer: No.

+(1, if ... then 1 else proc(x)x)

If we always knew whether ... produces true or false, we could solve
the halting problem.

Types

Solution to our dilemma

In the process of rejecting expressions that are certainly bad, also
reject some expressions that are good.

+(1, if (prime? 131101) then 1 else proc(x)x)

Overall strategy:

Assign a type to each expression.

Compute the type of a complex expression based on the types of
its subexpressions.

Types

1 : int

true : bool

+(1, 2)

int int

int

+(1, false)

int bool

no type

Types

if true then 1 else 2

bool int int

int

if +(1,2) then 1 else 2

int

no type

if false then 2 else false

bool int bool

no type

Types

x : no type

proc(bool x)x

bool

bool -> bool

if x then 1 else 2proc(bool x)

bool int int

int

bool -> int

Types

(proc(bool x)if x then 1 else 2 true)

bool -> int bool

int

(proc(bool x)if x then 1 else 2 5)

bool -> int int

no type

(7 5)

int int

no type

Types

+(x, y)proc(int x, int y)

int int

int

int * int -> int

(proc(int x, int y)+(x, y) 5 6)

int * int -> int int int

int

(proc(int x, int y)+(x, y) 5)

int * int -> int int

no type

New Interpreter and Checker

Change our interpreter:

Add types for arguments and letrec results to the grammar

Implement a type-checker:

Recursively assign types to subexpressions

Check consistency at if and application

Treat primitives as built-in functions

+ : int * int -> int

