let f = proc(x)0
in (f +(1,+(2,+(3,+(4,+(5,6))))))

The computed 21 is never used.

What if we were lazy about computing function arguments (in case they
aren’'t used)?

Manual laziness:

let f = proc(xthunk)O
in (f proc()+(1,+(2,+(3,+(4,+(5,6))))))

let f = proc(xthunk)-((xthunk), 7)
in (f proc()+(1,+(2,+(3,+(4,+(5,6))))))

By using pr oc to delay evaluation, we can avoid unnecessary
computation.

How about making the language compute function arguments lazily in all
applications?

»O

let f = proc(x)0
in (f +(1,2))

let f = proc(x)0
in (f +(1,2))

+(1, 2)

let f = proc(x)0
in (f +(1,2))

Jx[e[> >+(1, 2)

let f = proc(x)0
in (f +(1,2))

X|®f >® »+(1, 2)|®

let f = proc(x)0
in (f +(1,2))

The resultis 0.

»O

let f = proc(x)-(x,1)
in (f +(1,2))

o >0 »>x|-(x,1)|®

let f = proc(x)-(x,1)
in (f +(1,2))

® >0 »>x|-(x,1)|®

+(1,2)|®

let f = proc(x)-(x,1)
in (f +(1,2))

o >0 »>x|-(x,1)|®

Jx[o| >®[>+(1,2) @

let f = proc(x)-(x,1)
in (f +(1,2))

o >0 »>x|-(x,1)|®

X|®f >® »+(1, 2)|®

let f = proc(x)-(x,1)
in (f +(1,2))

Force evaluation of thunk.

12

f 1O >0 »x|-(x,1)|®

Jx[o| >®[>+(1,2) @

let f = proc(x)-(x,1)
in (f +(1,2))

With 3 as the value of x.

13

f [®f >® »x|- (

x, 1) 10

+(1, 2)

let f = proc(x)-(x,1)

in (f +(1,2))

The result is 2.

14

»O

let f = proc(x)-(x,1)
Inlet y =17
in (f +(1,y))

Lazy expression that needs its environment

15

o >0 »>x|-(x,1)|®

let f = proc(x)-(x,1)
Inlet y =7
in (f +(1,y))

16

O
v
o
v
<

-(X,l) ®

let f = proc(x)-(x,1)
Inlet y =17
in (f +(1,vy))

17

—h

o >0 »>x|-(x,1)|®

<<

+(1,y)|®

let f = proc(x)-(x,1)
Inlet y =17
in (f +(1,y))

18

f|® >0 »x|-(x,1)|®
ﬁ
y|® >/

let f = proc(x)-(x,1)
Inlet y =17
in (f +(1,y))

19

v
o
v
<

-(X,l) ®

let f = proc(x)-(x,1)
Inlet y =17
in (f +(1,y))

20

»O

let f = proc(x)-(x,1)
in let y = +(3,4)
in (f +(1,y))

Change binding of y to an expression.

21

o >0 »>x|-(x,1)|®

let f = proc(x)-(x,1)
inlet y = +(3,4)
in (f +(1,y))

f|® »® »x|-(x,1)|®

yl®| >® >+(3,4)|e

let f = proc(x)-(x,1)
in let y = +(3,4)
in (f +(1,y))

Added lazy binding for y.

23

® >0 »>x|-(x,1)|®

o >0 >+(3 4)®

+(1,y)|®

let f = proc(x)-(x,1)
in let y = +(3,4)
in (f +(1,y))

>0 >X|-(Xx,1)|®

o >0 >+(3 4)®

» X C%Q%+(1, y) ®

let f = proc(x)-(x,1)
in let y = +(3,4)
in (f +(1,y))

f|® »® »x|-(x,1)|®

»Y ® Q%+(3, 4) o

X|[®f >®[>+(1,y)|®

let f = proc(x)-(x,1)
in let y = +(3,4)
in (f +(1,y))

>0 >X|-(Xx,1)|®

o >0 >+(3 4)®

X|[®f >®[>+(1,y)|®

let f = proc(x)-(x,1)
inlet y = +(3,4)
in (f +(1,y))

Interpreter changes:
® Change eval - f un-r ands to create thunks.

® Change variable lookup to eval thunks.

28

The lazy strategy we just implemented is call-by-name.
® Advantage: unneeded arguments are not computed.
® Disadvantage: needed arguments may be computed many times.

let f = proc(x)+(x, +(x, X))
in (f +(1,+(2,+(3,+(4,+(5,6))))))

Best of both worlds: call-by-need
Evaluates each lazy expression once, then remembers the result.

29

Interpreter changes:

® Change variable lookup to replace thunks in locations with their
values.

30

® Call-by-name, call-by-need = lazy evaluation

® Call-by-value = eager evaluation

Call-by-reference can augment either

31

® Most languages are call-by-value
~ C, C++, Pascal, Scheme, Java, ML, Smalltalk...

® Some provide call-by-reference
- C++, Pascal

® A few are call-by-need
~ Haskell

® Practically none are call-by-name

32

Why don’t more languages provide lazy evaluation?
® Disadvantage: evaluation order is not obvious.

let x =0

f = ..
In let vy set x=1
= set x=2

Z
in{ (fyz),; x}

33

Why do some languages provide lazy evaluation?
® Evaluation order does not matter if the language has no set form.
® Such languages are called purely functional.

Note: call-by-reference is meaningless in a purely functional language.

® A language with set can be called imperative.

Even in a purely functional language, lazy and eager evaluation produce
different results.

let f = proc(x)0
In (f <loop forever>)

® Eager answer: none

® Lazy answer: O

35

