let x = 10
y = 12
In set x = +(x,1);
X

Can’t write this, since we don’t have ; In our language.

let x = 10
y = 12
In let d = set x = +(x,1)
Il n X
Instead, use a binding for a dummy variable d to sequence
expressions. Initial environment is empty.

»O

let x = 10
y = 12

In let d = set x = +(x,1)
Il n X

Eval RHS (right-hand side) of the let expression. Purple part of program
shows the current expression. Top area shows environments, with
purple arrow to the current one.

X|10
»Y|12
let x = 10
y = 12
In let d = set x = +(x,1)

I N X

Extend the current environment with x and y, and eval body.

X|10
»Y|12
let x = 10
y = 12
In let d = set x = +(x,1)

Il N X

Eval RHS of the let expression.

X|11
»Y|12
let x = 10
y = 12
In let d = set x = +(x,1)

Il N X

It modifies the x In the current lexical scope. We define set to always
return 1.

X|11
yl1l2
ﬁ
»d]1
let x = 10
y = 12
In let d = set x = +(x,1)

Il N X

Bind d to the result 1. To eval the body, x, we look it up in the
environment as usual, and find 11.

let x = 10
y = 12

In let d = set x = +(x,1)
Il n X

The Point: Variables now correspond to boxes in the environment, not
fixed values.

»O

10
12
In let f = proc(z)+(z, x)
In let d = set x = +(x,1)
in (f 0)

| et X

An example with pr oc. Again, we start with the empty environment.

»O

10
12
In let f = proc(z)+(z, x)
In let d = set x = +(x,1)
in (f 0)

| et X

Eval RHS of the let expression.

10

X|[10

»Y|12

let x = 10
y = 12

in let f = proc(z)+(z, x)
In let d = set x = +(x,1)
In (f 0)

Extend the current environment with x and y, and eval body.

11

X|10

»Y|12

let x = 10
y = 12

In let f = proc(z)+(z, x)
In let d = set x = +(x,1)
in (f 0)

Eval RHS of the let expression...

12

X|[10
»WY112|
z|+(z,x) |®
let x = 10
y = 12

In let f = proc(z)+(z, x)
In let d = set x = +(x,1)
in (f 0)

... which creates a closure, pointing to the current environment.

fl1o»z|+(z, X) °

let x = 10
y = 12
In let f = proc(z)+(z, x)
In let d = set x = +(x,1)

in (f 0)

To finish the | et , the environment is extended with f bound to the
closure. Then evaluate the body.

14

fl1o»z|+(z, X) °

let x = 10
y = 12
In let f = proc(z)+(z, x)
In let d = set x = +(x, 1)

in (f 0)

Eval RHS of the let expression...

15

fl1o»z|+(z, X) °

let x = 10
y = 12
In let f = proc(z)+(z, x)
In let d = set x = +(x, 1)

in (f 0)

.. which changes the value of x, then produces 1.

16

7‘ <
fQ»z+(z,x)‘
A

Jdl1
let x = 10
y = 12

In let f = proc(z)+(z, x)
In let d = set x = +(x,1)
In (f 0)

To eval the body, (f 0), we look up f Inthe environment to find a
closure, and evaluate O to O.

17

11

12],
f o] >z|+(z, x) |
ﬁ
d|1

»Z10
et x =10

y = 12

In let f = proc(z)+(z, x)
In let d = set x = +(x,1)
in (f 0)

Extend the closure’s environment with O for z, and evaluate the
closure’s body in that environment. The result will be 11.

18

11
12],

f o] >z]+(z, x) |o
ﬁ
dl1

z|0
et x =10

y = 12

In let f = proc(z)+(z, x)
In let d = set x = +(x,1)
in (f 0)

The Point: By capturing environments, closures capture variables that
may change.

19

»O

let f = proc(z)
let x = 10

In let d = set x = +(Xx, 2)

I N X
in +((f 1), (f 9))

Another example with pr oc, but with the | et

Inside the pr oc.

20

»O

let f = proc(z)

let x = 10
In let d = set
I N X

In +((f 1), (f 9))

Eval RHS of the let expression...

X

(X, 2)

21

»O -

z|let x =10 inlet d =set x = +(x,2z) In

let f = proc(z)

let x = 10
In let d = set x = +(Xx, z)
Il n X

In +((f 1), (f 9))

.. which creates a closure, pointing to the current environment.

22

Jfl®{>z]let x = 10 inlet d = set x = +(x,z) in x|®

let f = proc(z)

let x = 10
In let d = set x = +(Xx, 2)
I N X

In +((f 1), (f 9))

Bind the closure to f and eval the body.

23

Jfl®{>z]let x = 10 inlet d = set x = +(x,z) in x|®

let f = proc(z)

let x = 10
In let d = set x = +(Xx, z)
I N X

In +((f 1), (f 9))

Evaluate the first operand, (f 1).

24

flo{>z[let x = 10 inlet d = set x = +(x,2z) in x|®

let f = proc(z)

let x = 10
In let d = set x = +(Xx, z)
Il n X

In +((f 1), (f 9))

Take the closure for f , extend its environment with a binding for z, and
eval the closure’s body.

25

flo{>z[let x = 10 inlet d = set x = +(x,2z) in x|®

let f = proc(z)

let x = 10
In let d = set x = +(Xx, 2)
I N X

in +((f 1), (f 9))
Eval the RHS.

26

flol >zllet x = 10 inlet d = set x

: 1|§x 10

let f = proc(z)

let x = 10
In let d = set x = +(Xx, 2)
Il n X

in +((f 1), (f 9))
Add the binding for x and eval the inner body.

flol >zllet x = 10 inlet d = set x

: 1|§x 10

let f = proc(z)

let x = 10
In let d = set x = +(x, z)
I n X

In +((f 1), (f 9))
Eval RHS...

flol >zllet x = 10 inlet d = set x

: 1|§x 11

let f = proc(z)

let x = 10
In let d = set x = +(x, z)
I n X

In +((f 1), (f 9))

... which modifies the value of x.

flo{>z[let x = 10 inlet d = set x = +(x,2z) in x|®

. 1|v\x 11y

Jdl1

let f = proc(z)

let x = 10
In let d = set x = +(Xx, 2)
Il N X

In +((f 1), (f 9))

Bindd to 1 and evaluate x, which produces 11.

30

flo{>z[let x = 10 inlet d = set x = +(x,2z) in x|®

. 1|v\x 11y

Jdl1

let f = proc(z)

let x = 10
In let d = set x = +(Xx, 2)
I N X

In +((f 1), (f 9))

First operand is 11. Now evaluate the second operand, (f 9).

31

flo{>z[let x = 10 inlet d = set x = +(x,2z) in x|®

. 1|v\x 11y

let f = proc(z)

let x = 10
In let d = set x = +(Xx, z)
Il n X

In +((f 1), (f 9))

Again, take the closure for f , extend the closure’s environment with a
binding for z, and eval the closure’s body.

32

f5*+zlet X

=10 inlet d =set x = +(x,2z) In
Z|1
I\xlll\
d|1
Z|9
Iv\,xlO
let f = proc(z)
let x = 10
In let d = set x = +(Xx, 2)
I n X
in +((f 1), (f 9))

Add a binding for x , then eval the inner body.

flo{>z[let x = 10 inlet d = set x = +(x,2z) in x|®

. 1|v\x 11y

: 9|§x 19

let f = proc(z)

let x = 10
In let d = set x = +(x, z)
I n X

In +((f 1), (f 9))

Again the dRHS modifies the value of x, but using the new z and x.

flol>zllet x = 10 inlet d = set x =

. 1|v\x 11y

: 9|v\x 19|y\
>

let f = proc(z)

let x = 10
In let d = set x = +(Xx, 2)
Il N X

In +((f 1), (f 9))

Bindd to 1 and evaluate x, which produces 19.

35

flo{>z[let x = 10 in let d = set x = +(X, 2)

. 1|\x 11y

: 9|vRx 19|y\
>

let f = proc(z)

let x = 10
In let d = set x = +(Xx, z)
I N X

In +((f 1), (f 9))

So the operands are 11and 19. The final result is 30.

36

flo{>z[let x = 10 inlet d = set x = +(x,2z) in x|®

. 1|v\x 11y

. 9|v\x 19|y\

let f = proc(z)

let x = 10
In let d = set x = +(Xx, 2)
I N X

In +((f 1), (f 9))

The Point: Every evaluation of a binding expression creates a new
variable (box).

»O

let nk = proc(x) proc(z)
let d = set x =
N X
inlet f = (nk 10)
Inlet g = (nk 12)
in ...

An example with a procedure in a procedure.

+(X, 2)

38

»O

let nk = proc(x) proc(z)
let d
I n X
inlet f = (nk 10)
Inlet g = (nk 12)
In ...

Eval RHS of the let expression...

set

X

+(X, z)

39

»O -

X|lproc(z)l et d

set X = +(X,z) in X |®

let nk = proc(x) proc(z)
let d = set x = +(Xx, z)
I n X
Iinlet f = (nk 10)
Inlet g = (nk 12)
In ...

.. wWhich creates a closure, pointing to the current environment.

40

set X = +(X,z) in X |®

»/MK|®>x|proc(z)l et d

let nk = proc(x) proc(z)
let d = set x = +(Xx, 2)
Il n X
inlet f = (nk 10)
In let g = (nk 12)
in ...

To finish the | et , the environment Is extended with nk bound to the
closure, then evaluate the body.

41

set X = +(X,z) in X |®

»/MK|®>x|proc(z)l et d

let nk = proc(x) proc(z)
let d = set x = +(Xx, 2)
Il n X
inlet f = (nk 10)
Inlet g = (nk 12)
in ...

Eval RHS, a function call. Look up nk...

42

set X = +(X,z) in X |®

nk|® > x|proc(z)l et d

»x]10

let nk = proc(x) proc(z)
let d = set x = +(Xx, z)
Il n X
inlet f = (nk 10)
Inlet g = (nk 12)
in ...

It's a closure, so extend the closure’s environment with 10, and eval the
closure’s body.

nk|®| >x[proc(z)let d = set x = +(x,z) in x|®
X|10
(- s
z|let d = set x = +(x,2z) In x|®

let nk = proc(x) proc(z)
let d = set x = +(X, z)
Il n X
inlet f = (nk 10)
Inlet g = (nk 12)
in ...

The body Is a pr oc expression, so we create another closure. Note that
the variable x Is in the closure’s environment.

A

let nk = proc(x) proc(z)

I n |

| et d
Il n X

et f = (nk 10)

In let g = (nk 12)
In ...

= set

nmk|® > x|proc(z)l et d = set x = +(x,z) in
f x|10
< — S
,f'»zletd:setx:+(x,z)|nx5

X = +(X, z)

Bind f to the closure, and evaluate the body.

0, -

nk|®| >x[proc(z)let d = set x = +(x,z) in x|®
f X|10
< T .
,f'»zletd:setx:+(x,z)inx‘

let nk = proc(x) proc(z)
let d = set x = +(X, z2)
Il n X
inlet f = (nk 10)
Inlet g = (nk 12)
in ...

Eval RHS of the let expression, another call to nk. Do the same thing as
before...

2O

1

7p)

D

—

X

1

+

— |
X |
N |
~

>

X

o

® >x|proc(z)l et d
f X|10
< S
flof>zllet d = set x = +(x,z) in x|®
X|12

,I_g'»zlet d = set x = +(x,2z) iIn X |®

let nk = proc(x) proc(z)
let d = set x = +(Xx, 2)
Il n X
inlet f = (nk 10)
Inlet g = (nk 12)
in ...

Just as before, we extend nk’s environment with (a new) x and get a
closure, this time bound to g.

47

2O

1

7p)

D

—

X

1

+

— |
X |
N |
~

>

X

o

® >x|proc(z)l et d
f X|10
< S
flof>zllet d = set x = +(x,z) in x|®
X|12

,I_g'»zlet d = set x = +(x,2z) iIn x|®

let nk = proc(x) proc(z)
let d = set x = +(X, z2)
Il n X
inlet f = (nk 10)
Inlet g = (nk 12)
in ...

At this point, f and g have private versions of X.

48

2O

1

7p)

D

—

X

1

+

— |
X |
N |
~

>

X

o

® >x|proc(z)l et d
f X|10
< S
flof>zllet d = set x = +(x,z) in x|®
X|12

|_g¢+z|et d = set x = +(x,2z) iIn x|®

let nk = proc(x) proc(z)
let d = set x = +(X, z2)
Il n X
inlet f = (nk 10)
Inlet g = (nk 12)
in ...

The Point: Closures can capture generated variables, effectively getting
private state.

49

Summary:
® Variables now denote locations, not values.

® | exical scope still works.

50

