let x = 10 let x = 10
y =12 y = 12
in set x = +(x,1); inlet d =set x = +(x,1)
X in X
Can’t write this, since we don’t have ; in our language. Instead, use a binding for a dummy variable d to sequence

expressions. Initial environment is empty.

x|10
»y[12
let x = 10 let x = 10
y =12 y = 12
inlet d =set x = +(x,1) inlet d =set x = +(x,1)
in X in X
Eval RHS (right-hand side) of the let expression. Purple part of program Extend the current environment with x and y, and eval body.

shows the current expression. Top area shows environments, with
purple arrow to the current one.

x|10 X|11

»y[12 »y[12

let x = 10 let x = 10
y =12 y =12

inlet d=set x = +(x,1) inlet d=set x = +(x,1)
in X in X

Eval RHS of the let expression. It modifies the x in the current lexical scope. We define set to always

return 1.

11
12

~<><»O
~<><»O

[
N

E=x
=
2]
=

let x = 10 let x = 10
y =12 y = 12
inlet d =set x = +(x,1) inlet d =set x = +(x,1)
in x in X
Bind d to the result 1. To eval the body, x, we look it up in the The Point: Variables now correspond to boxes in the environment, not

environment as usual, and find 11. fixed values.

An example with pr oc. Again, we start with the empty environment.

Extend the current environment with x and y, and eval body.

= 10

= 12

et f = proc(z)+(z,x)

inlet d=set x = +(x,1)
in (f 0)

= 10

=12

et f = proc(z)+(z,x)

inlet d = set x = +(x,1)
in (f 0)

1

let x = 10
=12
inlet f = proc(z)+(z,x)
inlet d=set x = +(x,1)
in (f 0)

Eval RHS of the let expression.

10

x|10

»y[12

let x = 10
y =12

inlet f = proc(z)+(z,x)
inlet d=set x = +(x,1)
in (f 0)

Eval RHS of the let expression...

® ®

x|10 x|10
>Y112], yl12|,
Y I \\ ﬁ Y I \\‘
z[+(z. %) o] St [of>z[+(z, x) |o]
let x = 10 let x = 10
y =12 y = 12
inlet f = proc(z)+(z,x) inlet f = proc(z)+(z,x)
inlet d=set x = +(x,1) inlet d=set x = +(x,1)
in (f 0) in (f 0)
... which creates a closure, pointing to the current environment. To finish the | et , the environment is extended with f bound to the

closure. Then evaluate the body.

14

® ®

X]10 x|11
yl12],] yl12]]
Sl Jobiz]+(z, x) Jo] Jileblz[+(z, x)]9
let x = 10 let x = 10
y =12 y =12
inlet f = proc(z)+(z,x) inlet f = proc(z)+(z,x)
inlet d=set x = +(x,1) inlet d=set x = +(x,1)
in (f 0) in (f 0)

Eval RHS of the let expression... ... which changes the value of x, then produces 1.

16

let x = 10
= 12
inlet f = proc(z)+(z,x)
inlet d=set x = +(x,1)
in (f 0)

To eval the body, (f 0), we look up f in the environment to find a
closure, and evaluate O to O.

let x = 10
= 12
inlet f = proc(z)+(z,x)
inlet d=set x = +(x,1)
in (f 0)

The Point: By capturing environments, closures capture variables that
may change.

17

19

let x = 10
= 12
inlet f = proc(z)+(z,x)
inlet d=set x = +(x,1)
in (f 0)

Extend the closure’s environment with O for z, and evaluate the
closure’s body in that environment. The result will be 11.

let f = proc(z)

let x = 10
inlet d = set x = +(x, 2)
in x

in+((f 1), (f 9))

Another example with pr oc, but with the | et inside the proc.

let f = proc(z)

let x = 10
inlet d = set x = +(x, 2)
in x

in+((f 1), (f 9))

Eval RHS of the let expression...

,|f|0{—>|z|let X =10 in let d = set x

let f = proc(z)

let x = 10
inlet d = set x = +(Xx, 2)
in x

in+((f 1), (f 9))

Bind the closure to f and eval the body.

21

»O. o

Y

|z||et X =10 in let d = set x = +(x,2z) in x|‘|

let f = proc(z)

let x = 10
inlet d = set x = +(x, 2)
in x

in+((f 1), (f 9))

... Which creates a closure, pointing to the current environment.

Jfle>zllet x = 10 inlet d = set x = +(x,2) in x|$|

let f = proc(z)

let x = 10
inlet d = set x = +(x, 2)
in x

in+((f 1), (f 9))

Evaluate the first operand, (f 1).

24

let f = proc(z) let f = proc(z)

let x = 10 let x = 10
inlet d = set x = +(x, 2) inlet d = set x = +(x, 2)
in X in X
in +((f 1), (f 9)) in +((f 1), (f 9))
Take the closure for f , extend its environment with a binding for z, and Eval the RHS.

eval the closure’s body.

let f = proc(z) let f = proc(z)
let x = 10 let x = 10
inlet d = set x = +(x, 2) inlet d=set x = +(x, 2)
in X in X
in+((f 1), (f 9) in+((f 1), (f 9))

Add the binding for x and eval the inner body. Eval RHS...

27

let f = proc(z)

let x = 10
inlet d=set x = +(x, 2)
in X

in+((f 1), (f 9))

... which modifies the value of x.

let f = proc(z)

let x = 10
inlet d = set x = +(x, 2)
in x

in+((f 1), (f 9))

Bindd to 1 and evaluate x, which produces 11.

let f = proc(z)

let x = 10
inlet d = set x = +(Xx, 2)
in x

in+((f 1), (f 9))

First operand is 11. Now evaluate the second operand, (f

9).

31

let f = proc(z)

let x = 10
inlet d = set x = +(x, 2)
in x

in+((f 1), (f 9))

Again, take the closure for f , extend the closure’s environment with a

binding for z, and eval the closure’s body.

let f = proc(z) let f = proc(z)

et x = 10 let x = 10
inlet d = set x = +(x, 2) inlet d = set x = +(x, 2)
in x in x
in +((f 1), (f 9)) in +((f 1), (f 9))
Add a binding for x , then eval the inner body. Again the dRHS modifies the value of x, but using the new z and x.

let f = proc(z) let f = proc(z)
let x = 10 let x = 10
inlet d = set x = +(Xx, 2) inlet d = set x = +(x, 2)
in x in x
in+((f 1), (f 9)) in+((f 1), (f 9))

Bindd to 1 and evaluate x, which produces 19. So the operands are 11and 19. The final result is 30.

let f = proc(z) et nk = proc(x) proc(z)
let x = 10 let d = set x = +(Xx, 2)
inlet d = set x = +(x, 2) in x
in X inlet f = (nk 10)
in+((f 1), (f 9)) inlet g = (nk 12)
in ...
The Point: Every evaluation of a binding expression creates a new
variable (box). An example with a procedure in a procedure.
>O »O. -

|x|proc(z)| et d = set x = +(x,2z) in x|‘|

et nk = proc(x) proc(z) let nk = proc(x) proc(z)
let d = set x = +(x, 2) let d = set x = +(x, 2)
in x in X
inlet f = (nk 10) inlet f = (nk 10)
inlet g =(nk 12) inlet g =(nk 12)
in ... in ...

Eval RHS of the let expression... ... which creates a closure, pointing to the current environment.

A

,Irrk|0|—>|x|proc(z)l et d =set x = +(x,z) in x|‘|

et nk = proc(x) proc(z)
let d = set x = +(Xx, 2)
in x
inlet f = (nk 10)
inlet g = (nk 12)
in ...

To finish the | et , the environment is extended with mk bound to the
closure, then evaluate the body.

a

et nk = proc(x) proc(z)
let d = set x = +(Xx, 2)
in X
inlet f = (nk 10)
inlet g =(nk 12)
in ...

It's a closure, so extend the closure’s environment with 10, and eval the
closure’s body.

A

,Irrk|0|—>|x|proc(z)l et d =set x = +(x,2z) in x|‘|

et nk = proc(x) proc(z)
let d = set x = +(Xx, 2)
in x

= (nk 10)

(mk 12)

inlet f
inlet g =
in ...

Eval RHS, a function call. Look up nk...

< -
< —_—

|rrkM$‘|proc(z)l et d
X 10{

|z|| et d = set x

set x = +(x,2z) in x|‘|

+(x,2z) in x|£|

et nk = proc(x) proc(z)
let d = set x = +(Xx, 2)
in X
inlet f = (nk 10)
inlet g =(nk 12)
in ...

The body is a pr oc expression, so we create another closure. Note that
the variable x is in the closure’s environment.

a2

A

) -

|rrkM$‘|proc(z)l et d
7 X 10{

,|f 0{—>|z|| et d = set x

set x = +(x,2z) in x|‘|

+(x,2z) in x|£|

et nk = proc(x) proc(z)
let d = set x = +(Xx, 2)
in x
inlet f = (nk 10)
inlet g =(nk 12)
in ...

Bind f to the closure, and evaluate the body.

A

) -

|m§’\$|proc(z)let d
7 xlO{

set x = +(x,2z) in x|‘|

\%HZ'I et d = set x = +(x,2z) in X|L|
\

B}
>|Q:i—’|2|| et d =set x = +(x,2) in x|‘|

et nk = proc(x) proc(z)
let d = set x = +(Xx, 2)
in x
inlet f = (nk 10)
inlet g =(nk 12)
in ...

Just as before, we extend nk’s environment with (a new) x and get a
closure, this time bound to g.

a7

A

) -

|rrkM$‘|proc(z)l et d
7 X 10{

,|f 0{—>|z|| et d = set x

set x = +(x,2z) in x|‘|

+(x,2z) in x|£|

et nk = proc(x) proc(z)
let d = set x = +(Xx, 2)
in x
inlet f = (nk 10)
inlet g = (nk 12)
in ...

Eval RHS of the let expression, another call to nk. Do the same thing as
before...

A

) -

|m§’\$|proc(z)let d
7 xlO{

set x = +(x,2z) in x|‘|

\‘%ﬂ”lil' et d = set x = +(x,z) in x|£|
\

I,
JalePizliet d = set x = +(x,2) in x|‘|

et nk = proc(x) proc(z)
let d = set x = +(Xx, 2)
in x
inlet f = (nk 10)
inlet g =(nk 12)
in ...

At this point, f and g have private versions of x.

A —
< —_—

|rrk x|proc(z)| et d

set x = +(x,2z) in x|‘|

x]10], -
\fﬁ;{»l\;ll et d = set x = +(x,z) in ;ILI
x[12], N
|gj—>|z|l et d =set x = +(x,2z) in x|‘|

et nk = proc(x) proc(z)
let d = set x = +(Xx, 2)
in x
inlet f = (nk 10)
inlet g =(nk 12)
in ...

The Point: Closures can capture generated variables, effectively getting
private state.

49

Summary:
® Variables now denote locations, not values.

® | exical scope still works.

