Design recipe with cond

... no big change, but a little extra advice

1-2

Examples

When the problem statement divides the input into several
categories, test each one

Example:

Write the function 1ine-part that determines whether
a number 1s on zero, to the left, or to the right on a number line

< 4 >
0

(check-expect (line-part 0) "zero")
(check-expect (line-part -3) "left")
(check-expect (line-part 3) "right")

4-6

Body

When the problem statement divides the input into N categories:

* Start the body with a cond expression and N lines

* Formulate a question to recognize each category

Example:

Write the function 1ine-part that determines whether

a number 1s on zero, to the left, or to the right
on a number line

Three cases, so three lines: (define (line-part n)
(cond
[(= n 0)
(<K n 0) ...]
((>n 0) ...1))

8-10

