Conditionals

; maybe-wanted : image -> image

WANTED

(maybe-wanted

(maybe-wanted

Conditionals in Algebra

General format of conditionals in algebra:

answer question
{ answer question
Example:
X ifx>0
b =
abs(x) { -X otherwise
abs(10) = 10

abs(-7) =7

3

-4

Conditionals in Racket

(cond

answer question :
[question answer]

»

answer question [question answer])

Conditionals in Racket

(cond
[question answer]

[question answer])

* Any number of cond “lines”

* Each line has one question expression and one answer
expression

* Last question can be else for “otherwise”

(define (absolute x)
(cond
[(> x 0) x]
[else (- x)]))

(absolute 10) - 10

(absolute -7) » 7

-7

Evaluation Rules for cond

First question is literally true:
(cond
[true answer]
—» answer

[question answer])

i.e., keep only the first answer

Example:

(* 1 (cond - (* 1 0) -0
[Exrue 0]))

8-11

Evaluation Rules for cond

First question is literally false:

(cond
[false answer]
[question answer] o

(cond
[question answer]

[question answer]) [question answer])

i.e., throw away the first line

Example:

(+ 1 (cond - (+ 1 (cond
[false 1] [true 17]))
[Exue 17]))

- (+ 1 17) - 18

12-13

Evaluation Rules for cond

First question isn’t a value, yet:

(cond (cond
[question answer] [_ answer]
[question answer]) [question answer])

where question - nextques

i.e., evaluate first question as sub-expression

Example:
(+ 1 (cond - (+ 1 (cond
[(< 1 2) 5] [true 5]
[else 8])) [else 8]))

— (+ 1 5) - 6 14-15

Evaluation Rules for cond

No true answers:

(cond) > error

Just an else:

(cond

answer
[else answer]) ~

16

Programming with Conditionals

(define clyde

; maybe-wanted : image -> image
(define (maybe-wanted who)
(cond
[(image=? who clyde)
(above (text "WANTED" 32 "red") who)]
[else
who]))

WANTED

(maybe-wanted

17-18

Programming with Conditionals

(define clyde .4)

; maybe-wanted : image -> image

(define (maybe-wanted who)
(cond
[(image=? who clyde)
(above (text "WANTED" 32
[else
who]))

(maybe-wanted

"red") who)]

19

