Computing versus Programming

Computing
(* (- 212 32) 5/9)
- (* 180 5/9)
- 100

Programming

(define (f2c f)

Convert °F to °C... = (* (- £ 32) 5/9))

1-

2

How to Design Programs

Programming always requires creativity

But a design recipe can guide and focus creativity

iy

%
&
K3
]
I ‘I.lil
.]

We'll start with a simple recipe

Later, we’ll expand the recipe

3-7

Design Recipe |
Data
* Understand the input data: num, bool, string, or image
Contract, Purpose, and Header
* Describe (but don’t write) the function
Examples
* Show what will happen when the function is done
Body
* The most creative step: implement the function body
Test

* Run the examples

Data
Choose a representation suitable for the function input

* Fahrenheit degrees ™ num
* Grocery items W string
* Faces ® image

* Wages ™ num

In definitions: none for now

10-19

Contract, Purpose, and Header
Contract
Describes input(s) and output data

« £2¢ : num -> num
* 1s-milk? : string ->bool
* wearing-glasses? : image image image ->bool

* netpay : num -> num

In definitions: a comment

; £2c : num -> num

21-30

Contract, Purpose, and Header
Purpose
Describes, in English, what the function will do
* Converts F-degrees £ to C-degrees
* Checks whether s 1s a string for milk
* Checks whether p2 is p1 wearing glasses g

« Computes net pay (less taxes) for n hours worked

In definitions: a comment after the contract

; £2¢c : num -> num
; Converts F-degrees f to C-degrees

31-32

Contract, Purpose, and Header
Header

Starts the function using variables that are metioned in purpose

* (define (f2c £))

* (define (is-milk? s))

* (define (wearing-glasses? pl p2 g))
* (define (netpay n))

Check: function name and variable count match contract

In definitions: as above, but absorbed into implementation

; £2¢c : num -> num
; Converts F-degrees f to C-degrees
(define (f2c £))

33-35

Examples

Show example function calls an result

(check-expect (f2c 32) 0)
(check-expect (f2c 212) 100)

(check-expect (is-milk? "milk") true)
(check-expect (is-milk? "apple") false)

Check: function name, argument count and types match contract

In definitions: as above, after header/body

; £2c¢c : num -> num

; Converts F-degrees f to C-degrees
(define (f2c¢ £))

(check-expect (f2c 32) 0)
(check-expect (f2c¢ 212) 100)

37-39

Body

Fill in the body under the header

(define (f2c £f)
(* (- £ 32) 5/9))

(define (is-milk? s)
(string=? s "milk"))

In definitions: complete at this point

; £f2c : num -> num

; Converts F-degrees f to C-degrees
(define (f2c¢ £f)

(* (- £ 32) 5/9))
(check-expect (f2c 32) 0)
(check-expect (f2c¢c 212) 100)

41-42

Test

Click Run — examples serve as tests

bitmap failed

44

Design Recipe - Each Step Has a Purpose

Data

* Shape of input data will drive the implementation

Contract, Purpose, and Header

* Provides a first-level understanding of the function
Examples

* Gives a deeper understanding and exposes specification issues
Body

* The implementation is the whole point

Test

* Evidence that it works

45

The Design Recipe

(NN B

Use it for sman tasks

so that you'll know how to use it for BIG tasks

48

