List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)
(define-struct bigger-list (first rest))

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)
(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num ->
(define (func-for-lon 1)

-)

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)
(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num ->
(define (func-for-lon 1)

(cond

[(empty? 1) ...]

[(bigger-1ist? 1) ...]1))

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)
(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num ->
(define (func-for-lon 1)

(cond

[(empty? 1) ...]

[(bigger-1ist? 1)

(bigger-list-first 1)

... (bigger-list-rest 1)
..-1))

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)
(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num ->
(define (func-for-lon 1)

(cond

[(empty? 1) ...]

[(bigger-1ist? 1)

(bigger-list-first 1)

... (bigger-list-rest 1)
..-1))

List of Numbers

; A list-of-num is either

; - empty

; - (make-bigger-list num list-of-num)
(define-struct bigger-list (first rest))

Generic template:
; func-for-lon : list-of-num ->
(define (func-for-lon 1)

(cond

[(empty? 1) ...]

[(bigger-1ist? 1)

(bigger-list—~first 1)

(func-for-lon (bigger-list-rest 1))

... 1))

Aquarium Weight

; aq-weight : list-of-num -> num
; Sums the fish weights in 1
(define (ag-weight 1)

.)

Aquarium Weight

; aq-weight : list-of-num -> num
; Sums the fish weights in 1
(define (ag-weight 1)

.)

(check-expect (ag-weight empty) O0)

Aquarium Weight

; aq-weight : list-of-num -> num
; Sums the fish weights in 1
(define (ag-weight 1)

.)

(check-expect (ag-weight empty) O0)

(check-expect (ag-weight (make-bigger-list 2 empty))
2)

Aquarium Weight

; aq-weight : list-of-num -> num
; Sums the fish weights in 1
(define (ag-weight 1)

.)

(check-expect (ag-weight empty) O0)

(check-expect (ag-weight (make-bigger-list 2 empty))
2)

(check-expect (ag-weight (make-bigger-list 5 (make-bigger-list 2 empty)))
7) 10

Aquarium Weight

; aq-weight : list-of-num -> num
; Sums the fish weights in 1
(define (ag-weight 1)

(cond

[(empty? 1) ...]

[(bigger-1ist? 1)

(bigger-list-first 1)

... (ag-weight (bigger-list-rest 1))
... 1))

(check-expect (ag-weight empty) O0)

(check-expect (ag-weight (make-bigger-list 2 empty))
2)

(check-expect (ag-weight (make-bigger-list 5 (make-bigger-list 2 empty)))
7) 11

Aquarium Weight

; aq-weight : list-of-num -> num
; Sums the fish weights in 1
(define (ag-weight 1)

(cond

[(empty? 1) O]

[(bigger-1list? 1)

(+ (bigger-list-first 1)
(ag-weight (bigger-list-rest 1)))1]))

(check-expect (ag-weight empty) O0)

(check-expect (ag-weight (make-bigger-list 2 empty))
2)

(check-expect (ag-weight (make-bigger-list 5 (make-bigger-list 2 empty)))
7) 12

Aquarium Weight

; aq-weight : list-of-num -> num
; Sums the fish weights in 1
(define (ag-weight 1)

(cond

[(empty? 1) O]

[(bigger-1list? 1)

(+ (bigger-list-first 1)
(ag-weight (bigger-list-rest 1)))1]))

Try examples in the stepper
(check-expect (ag-weight empty) O0)

(check-expect (ag-weight (make-bigger-list 2 empty))
2)

(check-expect (ag-weight (make-bigger-list 5 (make-bigger-list 2 empty)))
7) 13

Design Recipe for Lists

Design recipe changes for today:

None

Granted, the self-reference was slightly novel...

; A list-of-num is either
; - empty
;- (make-bigger-list num list-of-num)

14-15

Recursion

A self-reference in a data definition leads to a recursive
function—one that calls itself

(define (ag-weight 1)
(cond
[(empty? 1) O]
[(bigger-1ist? 1)
(+ (bigger-list-first 1)
(ag-weight (bigger-list-rest 1)))1]1))

16

