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Noisy Networks

I Many problems of interest are NP-hard to solve.

I Exact or approximate algorithms for instances in structural
classes.

I But, real-world networks are noisy.

I Real-world networks tend to lie close to a structural class.
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Noisy Networks: Social Networks close to Bounded Degree

Karate Club Network

I Max. degree = 17.

After Vertex Deletion

I Max. degree = 11.
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Noisy Networks: Road Networks1 close to Planar

Road Network

Planar After Edge Deletions

1Road network image from (Eppstein & Gupta, 2017)
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Noisy Networks: Prior Work

I Prior work edits noisy graphs to a structural class but discard
the noise2.

I Structural Rounding gives constant factor approximations on
noisy graphs close to a structural class.

I First looks at the structured part, then accounts for the noise.

2(Magen & Moharrami, 2009), (Chan & Har-Peled, 2012), (Bansal & Umboh, 2017)



Structural Rounding Framework

I Edit3: Use edit operation ϕ to edit G into the class C . Let
G ′ be the edited graph.

I A problem is stable wrt ϕ with constant c ′, with d edits if
OPT(G ′) < OPT(G ) + c ′ · d .

I Solve: on G ′ with algorithms for instances in class C .

I Lift: Extend solution on G ′ to G .

I A problem can be structurally lifted wrt ϕ with constant c and
a solution S ′ on G ′ can be converted in poly-time to a solution
S on G with cost(S) < cost(S ′) + c · d .

3Edit, Solve and Lift can be solved approximately or exactly
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Vertex Cover in Near Bipartite Graphs

Noisy input graph G .

I The Vertex Cover problem takes as input an undirected
graph G = (V ,E ), and finds a subset S ⊆ V such that every
edge in E has at least one endpoint in S .



Vertex Cover in Near Bipartite Graphs: Edit

Edit G to a bipartite graph G ′.

I Odd Cycle Transversal for editing to bipartite.

I Stability constant c ′ = 0 for Vertex Cover wrt vertex
deletions.



Vertex Cover in Near Bipartite Graphs: Solve

Solution S ′ on G ′.

I Solve Vertex Cover exactly in poly-time on G ′ using
Hopcroft-Karp algorithm4.

4Hopcroft and Karp, 1973



Vertex Cover in Near Bipartite Graphs: Lift

Näıve Lifting

Greedy Lifting

I Lift solution S ′ from edited graph G ′ to a solution S for the
noisy graph G .

I Lifting constant c = 1 for Vertex Cover wrt vertex
deletions.
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Structural Rounding Theorem

Theorem (Demaine et al, 2019)

Let π be a minimization problem

I that is stable wrt ϕ with constant c ′ and

I that can be structurally lifted wrt ϕ with constant c , and

I has a poly-time ρ(λ)-approximation in parameterized class
Cλ5.

I And there’s a poly-time (α, β)-approximation6 into the
class Cλ,

then there is a poly-time
((1 + c ′αδ) · ρ(βλ) + cαδ)-approximation for π on graphs that
are (δ · OPTπ(G ))-close to Cλ.

5Allows editing to family of graphs
6Takes α · OPT edits to reach the class Cβλ
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Structural Rounding for Vertex Cover: Results7
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7B. Lavallee, H. Russell, B. D. Sullivan, and A. van der Poel. Approximating Vertex Cover

using Structural Rounding. ALENEX, 2020



Structural Rounding for Vertex Cover: Results



Structural Rounding: Broad Applicability

Structural Classes

Editing

Operations

Problems

Planar,

Bounded Treewidth,

Bounded Degree,
· · ·

Vertex &

Edge Deletions,

Contractions,

· · ·

Vertex Cover,

Independent Set,

Dominating Set,

· · ·

Structural
Rounding



Structural Rounding: Positive Editing Results

Graph
Family Cλ

Bicriteria Approximations8 into the class Cλ
Vertex Deletion Edge Deletion

Bounded
Degeneracy (r)

(4, 4)-approx. (Density Based)

(6, 6)-approx. (LP-Based)

O(log n)-approx. (Greedy)

(5, 5)-approx.

O(log n)-approx. (Greedy)

Bounded
Treewidth (w)

(O(log1.5 n), O(
√

logw))-approx. (O(log n log log n), O(logw))-approx.9

Bounded
Pathwidth (w)

(O(log1.5 n), O(
√

logw · log n))-approx. –

8α · OPT edits to reach the class Cβλ

9Bansal et al, 2017



Limitations: Editing

I Editing algorithms are slow.

I Constants are too large.

I Editing is a well-studied area of research.



New Directions: Maximum Subgraphs

I Maximum subgraphs vs. approximate edit sets.

I Polylogarithmic approximation for editing to planar10 and
constant factor approximation for maximum subgraph11.

I Accommodate the difficulty of editing to specific classes.

10Kawarabayashi et al., 2017
11Călinescu et al., 1998



New Directions: Dominating Set Problem

I Dominating Set on noisy graphs.

I Classically hard problem.

I Dominating Set and variants have applications in
document summarization, ad-hoc networks, social networks,
and communication networks.



Thanks!
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