Gene Module Decomposition

Madison Cooley
Casey S. Greene, Davis Issac, Milton Pividori, Blair D. Sullivan

Parameterized algorithms for identifying gene co-expression modules via weighted clique decomposition

University of Utah | SIAM ACDA21

Modules

GENE SIMMDNY
FAMILY JEWEL'

Modules


```
GENE SIMMDN\%
FAMILY JEWEL'
```


Modules

Modules

Biological Processes

Gene-to-Gene Projection

Gene-to-Gene Projection

Gene-to-Gene Projection

Gene-to-Gene Projection

Contributions

Exact Weighted Clique Decomposition (EWCD)

Input: a graph G, non-negative edge weights w, integer k.
Output: a set of at most k weighted cliques such that w agrees with the sum of containing cliques on each edge.

Contributions

Exact Weighted Clique Decomposition (EWCD)
Input: a graph G, non-negative edge weights w, integer k.
Output: a set of at most k weighted cliques such that w agrees with the sum of containing cliques on each edge.

Contributions

Exact Weighted Clique Decomposition (EWCD)

Input: a graph G, non-negative edge weights w, integer k.
Output: a set of at most k weighted cliques such that w agrees with the sum of containing cliques on each edge.

Contributions

Exact Weighted Clique Decomposition (EWCD)

Input: a graph G, non-negative edge weights w, integer k.
Output: a set of at most k weighted cliques such that w agrees with the sum of containing cliques on each edge.

Feldmann et al. (2020)

$$
K=14
$$

Contributions

Exact Weighted Clique Decomposition (EWCD)

Input: a graph G, non-negative edge weights w, integer k.
Output: a set of at most k weighted cliques such that w agrees with the sum of containing cliques on each edge.

Feldmann et al. (2020)

$$
K=14
$$

- K \equiv total \# of cliques

Challenges

- Simplified setting (integral weights, exact sums) vs. real data.

Challenges

- Simplified setting (integral weights, exact sums) vs. real data.

Results

- Two new FPT algorithms for solving EWCD (FPT 1/FPT 2).

Results

Results

Thanks! arXiv:2106.00657

Musician Gene Source: VSpectrum
Devil Gene Source: Alberto Cabello
Fire Breathing Gene Source: Alberto Cabello
Actor Gene Source: Patty Mooney

