
ACT: A Low Power VLIW Cluster Coprocessor for DSP Applications

Ali Ibrahim, Al Davis, Mike Parker

School of Computing, University of Utah

Salt Lake City, UT 84112

aibrahim@ttb.siemens.com, ald@cs.utah.edu, map@cray.com

Abstract

The ACT (Adaptive Cellular Telephony) coprocessor archi-

tecture is described and analyzed using a set of widely used

DSP algorithms. Performance and power are compared to

equivalent implementations on ASIC and embedded pro-

cessor platforms. Flexibility is achieved by fine-grain pro-

gram control of communication and execution resources.

Compression techniques, simple addressing modes for large

single-ported distributed register files, and configurable ad-

dress generation units provide performance and energy ef-

ficiency. An energy-delay reduction of two to three orders

of magnitude is achieved when compared to a conventional

embedded processor such as the Intel XScale.

1 Introduction

Future digital processing algorithms for portable devices re-

quire both energy efficient performance and flexibility. The

traditional approach for applications requiring both perfor-

mance and low-power is to employ ASICs for compute in-

tensive components. In areas where applications evolve

rapidly, flexibility is also an important factor and a general

purpose or embedded processor approach has often been

used for this reason. For applications such as wireless com-

munications, voice, and video processing: ASICs are too in-

flexible and costly; low-power processors do not have suffi-

cient computational power; and general purpose processors

consume too much power. This situation motivates this in-

vestigation of an alternative approach.

The ACT architecture takes advantage of the stream ori-

ented nature of wireless communication applications, in

particular 3G and 4G cellular telephony, which provide the

impetus for this work. The majority of the processing is

dominated by regular inner loops which process streams of

input signal data. A similar situation exists for speech pro-

cessing, encryption/decryption, and media encode/decode.

Operations in these codes can be classified into two cate-

gories: useful and overhead. Useful operations perform the

computational actions, while overhead operations consist of

branch and address generation operations.

In [10], we presented the architectural basis for this ap-

proach which retained much of the generality of a tradi-

tional processor while achieving energy and performance

characteristics close to that of an ASIC implementation.

This earlier approach employed multi-ported distributed

register files and multiple scratchpad SRAMs to feed a clus-

ter of execution resources that are embedded in a rich com-

munication structure. Fine-grain control is orchestrated by

a wide-word horizontal microcode program. This allows

special purpose computational pipelines to be dynamically

established that resemble data flows found in an ASIC im-

plementation. The fine-grained software control provides

considerable generality since these pipelines can effectively

be instantly reconfigured to support a new processing phase.

Algorithms which map poorly onto the communication and

execution resources still run, but at reduced efficiency. A

drawback of this previous effort is that the wide instruction

memory potentially consumed approximately 50% of the

total active power.

This paper introduces improved architectural features

which further enhance performance and which reduce the

power consumption of the instruction memory. The changes

include: a compression strategy for instructions; single

read-write ports instead of multi-ported distributed regis-

ters; simple address modes were added to these registers

which provide a renaming capability, thereby removing the

traditional need for loop unrolling and a better form of rotat-

ing registers [6]; flexible stream address generators (AGUs)

which reduce the instruction width; and a hardware loop

unit which reduces branch overhead. Space limitations pre-

vent describing all of the new features in detail. Therefore,

this paper describes the general architecture and analyzes

the benefits of the compression technique, the interconnect

and data forwarding strategy, and the new single-ported dis-

tributed register files.

1

2 Architecture Description

The high level organization of the coprocessor is shown in

Figure 1. In this organization, data is pushed into the copro-

cessor via the input SRAM by a host processor. The input

SRAM is dual ported to provide simultaneous access to the

coprocessor and the host. Similarly, results are posted to the

output SRAM and are removed by the host processor. This

allows the coprocessor to handle compute intensive tasks

while the host processor is responsible for coarse grained

copying of the input and output frames.

MEMORY

ADDRESS
GENERATION
UNITS

AND PC

DECODE
AND
DECOMPRESS

INST

INPUT
MEM MEM 0

SCRATCH SCRATCH
MEM 1

OUTPUT
MEM

CLUSTER0 CLUSTER1 CLUSTER2 CLUSTER3

FROM PROCESSOR/MMC TO PROCESSOR/MMC

ROUTING LEVEL 0

HW LOOP UNIT

Figure 1: Coprocessor Organization.

The coprocessor core is divided into storage, four exe-

cution clusters, address generators, hardware loop unit, and

the decode/compression unit. Each cluster in Figure 2, con-

sists of three integer execution units (XUs), and two 32-

entry register files, each with 1 read and 1 write port. Both

ALUs have single cycle latency and support add, subtract,

AND, and OR. ALU0 also supports byte-select and a styl-

ized bit-word multiply used in the complex number multi-

plication common in 3G algorithms as explained in the next

paragraph. ALU1 also supports compare-select and XOR.

The MS unit provides either multiply or shift. The MS com-

bination reduces multiplexer width and reflects the fact that

multiply and shift are rarely simultaneously needed. XUs

take 2 inputs and provide a single output.

Complex bit-word multiplication is commonly used in

3G wireless algorithms such as the rake receiver, channel

estimation, and cell search. These operations in general pur-

pose processors (GPPs) can be calculated by the use of an

if/else condition. This approach limits instruction level par-

allelism (ILP) and increases energy consumption due to the

need for a wider data-path. In this architecture, this problem

was resolved by the use of a semi-reconfigurable ALU0.

Figure 3 shows the design of ALU0 which is the same in

all clusters. This unit has 2 special registers that contain

the configuration bits. For complex multiplication, the in-

put bits are first loaded as a group of 16 bits into the ALU0

special configuration registers and used later as opcodes and

which effectively transform bit-word multiplication into ad-

dition and subtraction.

The choice of two ALUs in each cluster and four clus-

�������� ���� ����

CLUSTER

M A R FM A R F

TO/FROM OTHER CLUSTERS

 MEM 0 MEM 2 MEM 1 MEM 1

��
��
��
��

��
��
��
��

ALU ALU

ROUTING LEVEL 0

ROUTING LEVEL 1

Figure 2: Cluster Organization.

16 bits

 Opcode

 Reg

Reg

 ALU

Figure 3: ALU0.

ters in the coprocessor provides a good empirical balance

between execution, communication, and storage resources.

Increasing the number of ALUs or clusters does not gen-

erally increase performance, but suffers the disadvantage

of increasing the capacitance of the cluster inputs and in-

creases the multiplexing delay on the PU outputs. More

importantly, the communication paths and limited memory

ports cannot support the bandwidth required to efficiently

feed additional compute resources.

In application-specific embedded systems, such as 3G

cellular telephony, a significant number of variables pro-

duced by a particular function unit are consumed almost

immediately by another function unit. Hence these value

lifetimes span only a few instructions. In [10], more than

80% of such values were consumed immediately in algo-

rithms such as the turbo decoder and rake receiver. Directly

forwarding these values decreases power consumption by

eliminating the corresponding register file accesses. To ef-

ficiently forward the data between different stages of the

pipelines, two routing levels are used as shown in Figure 2.

Routing level 1 is used for inter- and intra-cluster communi-

cations. Routing level 0 is used for inter-cluster and mem-

ory communications.

In routing level 1 each XU input is connected to a 5:1

2

mux. The outputs of the 5:1 mux’s are registered. Each

XU receives its inputs from these pipeline registers. When

viewed individually, the sources feeding each mux are con-

fusing. A consistent view is evident for the pair. Namely

each XU can be fed by any of the 5 XU outputs (2 register

files, 2 ALUs, and the MS), any of the 3 point to point inter-

cluster links and 2 of 6 possible busses. At first glance, the

ability to get inputs from only one third of the busses would

appear to be a defect. However each bus is driven by a 6:1

mux located in routing level 0. This two-level multiplexing

strategy in driving input operands to the appropriate XU re-

moves the disadvantage 1. The result is a rich and reason-

ably general data routing capability which, when controlled

by the micro-code, allows a wide variety of applications to

be efficiently mapped onto the architecture.

Register files are clear thermal hot spots in modern pro-

cessors since they are both the source and sink for most

operations. In Imagine [17], it has been shown that for N

functional units, the power of a centralized register scales

as N3, where N is the number register ports. Power scales

linearly with the number of registers. Power in Imagine is

reduced by using distributed register files with single read

and write ports. The read ports are mapped on a one to one

basis to function unit input ports. The output ports, on the

other hand, drive busses which are connected to the register

write ports.

The register file strategy for our design is similar to

Imagine, but both the number of read and write ports

have been reduced. This reduces the bandwidth avail-

able to the execution resources but the potential disadvan-

tage is avoided by using a richer communication structure

which enables forwarding, and multiple scratchpad memo-

ries. This architecture employs two 32-entry register files in

each of the 4 clusters.

Each register file is split into the two adjacent windows

shown in Figure 4. The size of the windows are explicitly

allocated under program control by setting a tail pointer in

WP (Window Pointer) Unit to the first window . The sec-

ond window is addressed normally as a static register file

and the first window is effectively accessed like a rotating

register file using simple address modes in the address gen-

erator unit for the register file (AGURF). Each AGURF has

two pointers and performs increment and decrement by a

constant with wrap around, and modulo addressing to cre-

ate a circular buffer. This is particularly useful in filter al-

gorithms. In the algorithms we have tested, two pointers

in each AGURF are sufficient. If the data in a register file

needs to be accessed with a different stride and base pointer,

a new pointer can be loaded from the instruction or from the

static portion of the register file, since each AGURF is con-

nected to the output of the register file (not shown in the

1Merging routing level 0 and level 1 would increase the cycle time of

the coprocessor.

figure).

Each modally addressed register file (MARF) tail pointer

can be individually specified. This organization allows sig-

nificant register file specialization for different computation

phases, provides hardware support for rotating registers and

thus decreases the number of instructions associated with

loop unrolling, and reduces the instruction width. This re-

duces instruction memory power consumption.

Instr

Instr

WP Unit

AGURF

AGURF

REGION 1

REGION 0

Figure 4: MARF.

The hardware loop unit controls loops to eliminate the

extra computational overhead associated with branches and

loop increments. These techniques have been employed in

many commercial processors, e.g. [15]. The main dif-

ferences are in the number of supported loops. This design

supports a depth of 4 since that is sufficient for a wide range

of wireless communication and general DSP algorithms.

Since the computation in our target applications are dom-

inated by regular inner-loop calculations, address calcula-

tions on a separate address generation unit (AGU) can sig-

nificantly improve parallelism since the execution units of

the coprocessor do not need to compute addresses. In de-

signing the AGUs we have followed a similar approach to

that of the other XUs in the execution clusters. In this

approach, each AGU has a number of function units and

mux’s. The mux’s are configured every cycle to support

the requisite data flow for address calculations. However

this approach, by itself, requires increased instruction bits

for AGU opcodes, constants, and mux selects. This ap-

proach contains more generality than is commonly useful.

For instance, most of the mobile 3G wireless baseband algo-

rithms operate on one dimensional data frames. Image and

video algorithms operate on two dimensional data. Since

the focus is on 3G algorithms, the AGUs were designed to

accelerate one dimensional data accesses and unit strided

two dimensional data accesses. In order to support more

complex address calculations such as non-unit-strided two

dimensional addresses, configuration tables have also been

added. In this technique, each AGU has a four entry table.

Each entry contains the necessary bits to control the AGU

in the complex mode. The result provides simple addresses

to an arbitrary number of regular streams, and complex ad-

dress patterns for up to four streams per AGU and does not

require additional instruction bits that would be necessary

3

to directly support complex address patterns.

The micro-code controls everything on a per clock basis:

data steering, register load enables, operation selection, ad-

dress mode, and memory module selection. The flexibility

of fine-grained software control provides efficient execution

of a wide variety of algorithms. However, the power con-

sumed by the wide instruction word can be a problem. Both

the architecture and the regularity of the stream based codes

present an opportunity to employ compression techniques

(Section 3).

The input, output, and scratchpad SRAMs are all 16-bits

wide. The scratch and output SRAMs each have 1024 en-

tries, while the input SRAM has 2048 entries. The input

SRAM is organized as two 1024 word banks. In general,

these banks are used in a double buffered fashion, with one

buffer actively in use by the coprocessor while the other is

being written by the host. The SRAM capacities are influ-

enced by the frame sizes that were chosen to test the 3G

baseband algorithms. In our .25µ CMOS process, leakage

power is very small. SRAM power consumption is therefore

more dependent on the width of the memory (e.g. number

of sense amps) than on memory capacity.

Clock gating is used to limit power consumption of un-

used components. Since all internal pipeline registers of

the coprocessor have load enable signals controlled by the

program, they effectively provide clock gating for logic not

used in any particular cycle.

3 Microcode Compression

Compression generally exploits redundancy. Various tech-

niques emerged for RISC processors and were then applied

for VLIW architectures [11]. However, memory reduction

rather than energy dissipation was the driving force behind

these algorithms. More limited approaches have focused

on energy reduction. In [3] the decompression block was

placed between the main memory and the processor, and

hence did not show the impact of compression on the pro-

cessor. In [12], the processor was included in the analysis

by placing the decompression block between the cache and

the CPU. A 19% improvement for data intesive algorithms

was achieved. However power estimates were derived from

an analytical model rather than low-level circuit details.

In [10], we observed that computations in the target ap-

plications exhibit two forms of program parallelism, ILP

and data level parallelism (DLP). VLIW processors primar-

ily improve ILP by exploiting DLP. SIMD architectures di-

rectly reduce instruction width by applying a single instruc-

tion directly on multiple data.

Two decompression techniques were tried as shown in

Figure 5. The first includes a small local instruction mem-

ory that contains the most frequently executed instructions

of modulo scheduled loops [16]. Block A in Figure 5 rep-

resents the small local instruction memory. The size of this

local instruction memory (LIM) is 32 to match the appli-

cation requirements. Algorithms with higher requirements

will not be fully compressed. The compressed instruction

simply indexes the common code in the LIM. The size of

the indexed code is contained in the microinstruction. This

number is used in a counter, Block B, which controls access

to the common code in the LIM.

The result is that there are two types of instructions: long

and compressed. One third of the long instruction is enough

to address the entire LIM. The instruction memory is there-

fore divided into 3 banks. The number of accessed banks

depends on the instruction type determined by block E in

Figure 5. The memory generator tool (a commercial tool

provided by Artisan) shows that the power savings of this

strategy on average is limited to 20%. To improve on this,

an additional approach that exploits the SIMD presence in

these algorithms was also studied. The long instruction, in

this case, could potentially be reduced to a single short in-

struction that operates on multiple data. This short instruc-

tion is then stored in one of the banks which is decoded in

block C 2 whenever the instruction is accessed. The number

of SIMD instructions is currently limited to eight to avoid

increasing the cycle time of the decompression stage. Fi-

nally, the 3:1 mux in Figure 5 selects between the outputs

of the SIMD, LIM, and block D which forwards the uncom-

pressed instructions. The results of the SIMD compression

will be presented in Section 5

��
��
��
��

��
��
��
��

����

MEM

INSTRUCTION

COMPRESSED

 MUX

��
��
��
��

��
��
��
��

����

COMPRESSED
 INSTR INDEX

 SIMD
INSTR

NORMAL

 INSTR

 FETCH REGISTER

DECODE REGISTER

BANK
 SEL

(A)

(B)

(C)(D)(E)

BANK 0 BANK 1 BANK 2

Figure 5: Compression.

4 Algorithms

Several DSP algorithms have been mapped to the coproces-

sor to test its performance, energy efficiency, and flexibility.

2Placing this block at the output of LIM would increase the cycle time

of the decompression stage

4

Rake: Complex correlation on bits and words are used

often in 3G wireless algorithms. The Rake receiver and

cell search [1] are examples of these algorithms. The pri-

mary calculations are complex multiply-accumulate opera-

tions expressed as:

for(i = 1; i < SF ; i + +)
S = S + IN [i + delay] ∗ PN [i]}; 3

This equation represents a correlation for a particular

propagation path. Typically, correlations over multiple

paths (e.g. 4) need to be performed in 3G application suites.

Finite Impulse Response (FIR): a common filtering algo-

rithm implemented by using a series of delays, multipliers,

and adders to create the filter’s output.

Transpose Finite Impulse Response (TFIR): Another

common form of FIR filter.

Dot product(dotp): Computes the dot-product of two

vectors of size N elements.

Vector Product and Square(dotp sq): takes two vectors

V1 and V2 and produces two dot products V1 · V1 and

V1 ·V2. This can be used to compute G in the Vector-Sum

Excited Linear Prediction [7] (VSELP) coder.

Maximal Element of a Vector(Vecmax): Finds the maxi-

mum value in a vector of size N.

Matrix Multiplication(Matmult): Performs the multipli-

cation between two 8x8 matrices.

Strided Matrix Multiplication(STMatmult): Same as

Matmult, however rows and columns of the matrices are

accessed in a strided fashion.

Sum of Absolute Differences(SAD): It is useful in the

block match kernel of an MPEG-2 encoder. This algorithm

operates on a pair of 8 bit inputs. It produces the sum of the

absolute difference between corresponding pixels of the two

16x16 macroblocks as shown in the following pseudo-code:

for(i = 1; i < 16; i + +)
for(j = 1; i < 16; i + +)

diff = block0[i][j]− block1[i][j]
if(diff < 0)

diff = −diff

sad+ = diff

5 RESULTS

The coprocessor power and performance were measured us-

ing using Synopsys Nanosim, a commercial Spice level cir-

cuit simulator, on a fully synthesized and back-annotated

.25µm Verilog- and Module Compiler based implementa-

tion. A full clock tree and worst case RC wire loads are

included in the model. All algorithms were first written in a

high level stream oriented language and then modulo sched-

uled. Conflicts on register file write ports can be resolved

by storing the data in the post-mux registers for any number

3S, IN and PN are complex numbers. PN are bits, and IN are words.

of cycles since their load-enable lines are under program

control. This effectively creates a distributed set of single

entry registers files. The scheduled code is then compressed

using the above mentioned techniques. The microcode cor-

responding to each benchmark is then loaded into the in-

struction memory and the LIM. The circuit is then simu-

lated in Nanosim for the duration of several input packets.

The RMS current is used to calculate energy consumption.

In the general purpose processor case, energy and perfor-

mance numbers were taken from measurements on a low-

power 400MHz .18µm Intel XScale (StrongARM) PXA250

system. This system has been augmented to permit the mea-

surement of the average current consumed by the processor

and memory module via a digital oscilloscope and a non-

intrusive current probe. Each of the algorithms studied has

been implemented in C/C++ and compiled with the GNU

GCC/G++ compiler at optimization level O3, with loops

unrolled.

The FIR, TFIR, Dot Product, Vector Product and Square,

Maximum Value of a Vector, SAD, matrix multiplication

and strided matrix multiplication ASIC implementations

and power numbers were developed using a .25µm Ver-

ilog implementation using Nanosim. The Rake ASIC im-

plementation and energy numbers are taken from the litera-

ture [9].

Two types of experiments were performed: uncom-

pressed mode, and compressed mode. In the uncompressed

mode, the main instruction memory is accessed on every cy-

cle and hence the power dissipation due to instruction fetch

is the same for all benchmarks. In compressed mode, both

the LIM and SIMD decompression units were used. This

decreases power depending on the compression type.

Figure 6 illustrates the energy-delay product of the co-

processor and XScale, normalized to the ASIC (no com-

pression). Power numbers have been normalized to an

.18µm process. These values were scaled by the feature-

size λ using the method described by Gonzalez and

Horowitz [8] at their conservative value of 2.

Figure 6 shows that the coprocessor energy-delay prod-

uct varies between one and two orders of magnitude in the

uncompressed mode compared to the XScale. The data rate

(shown in Figure 7) sustained by the coprocessor, on the

other hand, varies. When compared to an ASIC for TFIR,

the coprocessor is able to achieve almost 1/4 the perfor-

mance of the ASIC (Note: the ASIC has 4 times as many

multipliers). In the FIR case, on the other hand, the copro-

cessor is capable of sustaining 1/6 the performance of the

ASIC. This was expected since the FIR implementation re-

quires data transfers between the register files in different

clusters. Such a transfer requires the use of an XU since the

register files are not directly connected. The effective data

transfer rate will decrease for filters with a higher number of

taps. For Rake, the coprocessor runs at 11 times the speed of

5

d
o
tp

S
T

M
a
tm

u
lt

V
e
c
m

a
x

R
a
k
e

M
a
tm

u
lt

T
F

IR

F
IR

S
A

D
D

o
tp

_
s
q
r

1.0

10.0

100.0

1000.0

10000.0

100000.0

E
n

e
rg

y
-D

e
la

y

Cluster
Xscale

Figure 6: Energy-delay of the cluster and the Xscale

with respect to ASIC (cluster/ASIC,no compression) (Xs-

cale/ASIC)

the ASIC. This particular ASIC was tuned to barely exceed

real-time performance. The excess performance of the co-

processor provides the opportunity to work on another task

or it can be powered down. For SAD, the coprocessor and

the ASIC have almost the same data rate since the ASIC

was designed to perform four SAD operations per cycle.

FIR, TFIR have very regular addressing modes, and high

data reuse which makes them a good candidate for the

MARF. The only data read or stored from/to memory are

the input/output values once every N cycles (N equals 4 for

a filter with 16 coefficients). Vector product and square, on

the other hand consume 4 data inputs per cycle and does not

present any data reuse opportunity.

Figure 8 shows that the instruction memory energy sav-

ings due to compression ranges between 17 and 38%. En-

ergy savings for most of the algorithms, excluding FIR and

TFIR, range between 17% and 21% and are due to the small

instruction memory. Energy savings for FIR and TFIR were

27% and 38% and are mostly due to the SIMD compression.

Taking advantages of SIMD compression in this architec-

ture was difficult since opcodes and mux selects in all rout-

ing levels have to be the same. Since FIR and TFIR operate

on data stored in the local register files, SIMD scheduling is

straightforward.

6 CONCLUSIONS & RELATED

WORK

Current embedded applications require architectures that

are flexible, high-performance, and consume minimal

d
o
tp

S
T

M
a
tm

u
lt

V
e
c
m

a
x

T
F

IR

R
a
k
e

M
a
tm

u
lt

S
A

D

F
IR

D
o
tp

_
s
q
r

0.001

0.01

0.1

1.0

10.0

100.0

D
a

ta
R

a
te

Cluster
Xscale

Figure 7: Data Rate of the cluster and the Xscale with re-

spect to ASIC

power. Neither ASICs or existing general purpose processor

strategies are adequate. ASICs lack flexibility; embedded

processors do not provide the requisite performance; and

performance microprocessors consume too much power.

Hybrid approaches exist. Texas Instruments has improved

the performance of their DSP processors by adding appli-

cation specific hardware support for Viterbi/Turbo decod-

ing and chip despreading [1]. Fine-grained reconfigurabil-

ity can be achieved by using FPGAs and ASICs as copro-

cessors for DSP processors. While this approach provides

more options for mapping the application onto the architec-

ture, FPGAs have much lower performance and consume

much higher power than an ASIC approach.

Research in coarse-grained reconfigurable architectures

focuses on the design of general purpose systems which can

be efficiently applied to particular applications [5]. For in-

stance, the Pleiades project at UC Berkeley [2] focuses on

an architectural template for low-power, high-performance

multimedia computing. The Pleiades design methodology

assumes a very specific algorithm domain. The Chameleon

system [4] has also introduced a reconfigurable communi-

cations processor. The system delivers high performance,

however it was designed for base station algorithms where

power consumption is less critical than in the handset.

The key in designing for low power, high performance,

and flexibility relies on finding opportunities for customiza-

tion for a particular domain. There could be a high num-

ber of parameters involved in this process (memory system,

single- vs. multi-cluster, bypass logic, register files, com-

pression, and function unit design). Each of these param-

6

d
o
tp

S
T

M
a
tm

u
lt

V
e
c
m

a
x

R
a
k
e

M
a
tm

u
lt

F
IR

S
A

D

T
F

IR
D

o
tp

_
s
q
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Decompress
Normal

Figure 8: Instruction power reduction due to compression

eters can have a big effect on the performance, power, and

flexibility.

VLIW architectures have been adopted for signal pro-

cessing applications for their power and performance ad-

vantages. These architectures are simple extensions of

single-issue load-store architectures. Hence, every function

unit port has a dedicated register file port. The register file

size, number of ports, and limitations in the communica-

tion interconnect have a major effect on the performance

and power dissipation. The results in [10] shows clearly

how ACT significantly outperforms many VLIW DSP pro-

cessors [13, 19, 14] such as the ST120 from STMicroelec-

tronics [19]. Note that the energy-delay product is a more

relevant metric, but the literature does not provide these data

for all our benchmarks.

In this paper, a multiple cluster fine-grain VLIW archi-

tecture has been described. The architecture was first de-

signed for the wireless domain, but has been shown to be

flexible for many other digital signal processing algorithms.

The benefits of clustering, register files, distributed mem-

ories, compression techniques, and data forwarding have

been analyzed.

In [17], the number of write ports was decreased by using

shared busses. In [18], power consumption was reduced by

forwarding data using bypass logic instead of accessing the

register file. In this paper, both read and write ports are re-

duced which potentially limit register bandwidth. This po-

tential defect is avoided by the use of a multi-level program-

controlled interconnect structure. A scheduler minimizes

routing conflicts to efficiently map the program onto the

communication and execution resources.

The disadvantage of such a fine grained controlled

VLIW approach is a wide instruction width which con-

sumes too much power. Compression techniques have been

presented which reduce this problem by 17% to 38%.

References

[1] Channel card design for 3G infrastructure equipment.

Technical report, SPRY048, Texas Instruments, 2003.

[2] A. Abnous, K. Seno, Y. Ichikawa, M. Wan, and J. M.

Rabaey. Evaluation of a low-power reconfigurable

DSP architecture. In IPPS/SPDP, pages 55–60, 1998.

[3] L. Benini, A. Macii, E. Macii, and M. Poncino. Mini-

mizing memory access energy in embedde systems by

selective instruction compression. IEEE Transactions

on VLSI Systems, 10(5), October 2002.

[4] Chameleon Systems Corp. http://-

www.chameleonsystems.com.

[5] K. Compton and S. Hauck. Reconfigurable comput-

ing: A survey of systems and software. ACM Comput-

ing Surveys, 34(2):171–210, June 2002.

[6] G. Doshi, R. Krishnaiyer, and K. Muthukumar. Op-

timizing software data prefetches with rotating regis-

ters. Proceedings of the 2001 International Confer-

ence on Parallel Architectures and Compilation Tech-

niques, pages p.257–267, Sept 2001.

[7] I. Gerson and M. Jasiuk. Vector sum excited linear

prediction (VSELP) speech coding at 8 kbits/s. Proc.

ICASSP, pages 461–464, 1990.

[8] R. Gonzalez and M. Horowitz. Energy dissipation in

general purpose processors. IEEE Journal of Solid

State Circuits, pages 1277–1284, Sept 1996.

[9] L. Harju, M. Kuulusa, and J. Nurmi. A flexible Rake

Receiver Architecture for WCDMA mobile terminals.

IEEE Workshop on Signal Processing Systems, pages

177–182, Oct 2002.

[10] A. Ibrahim, M. Parker, and A. Davis. Energy efficient

cluster coprocessors. International Conference on

Acoustics, Speech, and Signal Processing(ICASSP),

May 2004.

[11] J.S.Parakash, P.Shankar, and Y.N.Srikant. A simple

and fast scheme for code compression for VLIW pro-

cessors. Data Compression Conference, 2003.

[12] H. Lekatsas, W. Wolf, and rg Henkal. Code compres-

sion for low power embedded system design. 37th

Conference on Design Automation (DAC’00), June

2000.

7

[13] K. Loo, T. Alukaidey, S. Jimaa, and K. Salman. SIMD

technique for implementing the Max-Log-MAP algo-

rithm. GSPx, 2003.

[14] M. Marandian, J. Fridman, Z. Zvonar, and M. Salehi.

Performance analysis of turbo decoder for 3GPP stan-

dard using the sliding window algorithm. Personal, In-

door and Mobile Radio Communications, 2:127–131,

2001.

[15] P.Lapsley, J.Bier, A.Shoham, and E.A.Lee. DSP

processor fundamentals: Architectures and features,

chapter 8. IEEE Press series on Signal Processing,

1997.

[16] B. R. Rau. Iterative modulo scheduling: an algo-

rithm for software pipelining loops. Proceedings of

the 27th annual international symposium on Microar-

chitecture, pages 63–74, 1994.

[17] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany,

A. Lopez-Lagunas, P. R. Mattson, and J. D. Owens.

A bandwidth-efficient architecture for media process-

ing. In International Symposium on Microarchitec-

ture, pages 3–13, 1998.

[18] M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, and

R. Zafalon. Exploiting data forwarding to reduce the

power budget of VLIW embedded processors. Pro-

ceedings of the conference on Design, automation and

test in Europe, pages 252–257, 2001.

[19] STMicroelctronics Inc. http://www.stm.com/.

8

