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Abstract

Execution-driven simulation has become the primary method for evaluating architectural techniques as it facilitates
rapid design space exploration without the cost of building prototype hardware. To date, most simulation systems have
either focused on the cycle-accurate modeling of user-level code while ignoring operating system and I/O effects, or have
modeled complete systems while abstracting away many cycle-accurate timing details. The ML-RSIM simulation system
presented here combines detailed hardware models with the ability to simulate user-level as well as operating system activ-
ity, making it particularly suitable for exploring the interaction of applications with the operating system and I/O activity.
This paper provides an overview of the design of the simulation infrastructure and discusses its strengths and weaknesses in
terms of accuracy, flexibility, and performance. A validation study using LMBench microbenchmarks shows a good cor-
relation for most of the architectural characteristics, while operating system effects show a larger variability. By quantifying
the accuracy of the simulation tool in various areas, the validation effort not only helps gauge the validity of simulation
results but also allows users to assess the suitability of the tool for a particular purpose.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Simulation has become one of the predominant
tools for computer architecture research. It allows
researchers to rapidly explore novel techniques
and architectures without incurring the engineering
effort and expense of implementing prototype hard-
ware. In addition, it affords a flexibility normally
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not provided by real hardware. However, the
design and implementation of a suitable and robust
simulator is in itself a major undertaking that
requires a combination of architectural expertise
and software development skills. For this reason,
a number of readily available and proven simula-
tion systems such as SimpleScalar [2], SimOS
[16], SimICS [12] and RSIM [15] have found wide-
spread use. Understanding the performance, accu-
racy, and limitations of simulators is critical when
selecting a tool to answer a particular research
question.

This paper describes the design and validation of
ML-RSIM, an execution-driven system simulator
.
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that combines detailed hardware models of modern
workstation and server-class machines with a Unix-
like operating system [18]. The ML-RSIM environ-
ment, based on RSIM [15], extends the system
features normally represented by simulators to
include I/O devices and an operating system with-
out sacrificing fidelity of the processor model and
with only a small impact on simulation speed. A
detailed characterization of the accuracy of the
hardware models as well as the simulator operating
system highlights key strengths and weaknesses of
ML-RSIM and helps determine the tool�s suitability
for specific research tasks.

Simulator design is a trade-off between develop-
ment effort, simulation speed, modeling scope, and
accuracy. As such, most simulators are targeted
towards specific application domains and research
agendas. For instance, architectural simulators like
SimpleScalar [2] and RSIM [15] focus on the
cycle-accurate modeling of user-level instructions
by providing highly detailed models of the processor
and memory hierarchy. These tools are invaluable
for experiments involving compute-intensive appli-
cations, but they ignore many system-level effects
such as virtual memory, system calls, interrupt han-
dling, and other I/O related effects. System-level
simulators like SimOS [16] and SimICS [12], on
the other hand, provide complete system models
and thus account for application, operating system,
and I/O effects. However, to achieve acceptable sim-
ulation speed, hardware models are usually simpli-
fied and not cycle-accurate. Such system-level
simulators are able to model the interaction of hard-
ware, system software, and applications. However,
due to the abstract hardware models, only coarse-
grain effects can be observed.

In contrast, ML-RSIM combines detailed hard-
ware models of a microprocessor, memory hierar-
chy, and I/O subsystem with a simulated operating
system. As such, it supports detailed explorations
of the interaction of applications, operating sys-
tems, and I/O devices. Hardware models include a
dynamically scheduled processor with a two-level
cache hierarchy, coherent system bus, and a multi-
bank memory controller. These components are
augmented with an I/O subsystem consisting of a
PCI bridge, SCSI adapter, SCSI bus, and hard disk.
The fully-simulated ‘‘Lamix’’ operating system is
based on NetBSD source code and includes a sys-
tem call layer, multiple file systems with buffer
cache, device drivers, and multitasking capabilities
[18].
The following section briefly describes the design
of ML-RSIM, focusing on the I/O subsystem and
operating system infrastructure. Section 3 presents
the validation methodology used to gauge the accu-
racy of ML-RSIM. Section 4 presents the validation
results and discusses how important design deci-
sions affect the simulator�s utility and accuracy. Sec-
tion 5 contrasts this work with other simulation
infrastructures and validation efforts. Finally, Sec-
tion 6 summarizes and outlines ongoing and future
work.

2. ML-RSIM design

2.1. Machine model

The ML-RSIM processor model is based on
RSIM v1.0 [15] with extensions to simulate operat-
ing system code and memory-mapped access to I/O
devices. Other hardware models include a two-level
cache hierarchy, a coherent memory bus, a memory
controller, and several I/O devices. Combined, these
components model a contemporary workstation or
server-class machine, as shown in Fig. 1.

The ML-RSIM CPU model implements the
SPARC V8 instruction set [21] on a MIPS R12000-
like dynamically scheduled superscalar processor
core [14]. It also includes an instruction cache model,
TLB models, exception handling capabilities, and
support for privileged instructions and registers.
Both user-level and privileged instructions are simu-
lated, so simulation sessions account for both appli-
cation and kernel effects.

The cache hierarchy is modeled as a conventional
two-level structure with support for snooping cache
coherency. An uncached buffer handles load and
store instructions to I/O addresses, and supports
store combining to reduce system bus utilization.
The system bus implements snooping cache coher-
ency through a MESI protocol. The memory con-
troller supports SDRAM or RAMBUS memory in
a variety of configurations and accurately models
queueing delays, bank contention, and DRAM pre-
charge and refresh overhead.

The I/O subsystem is based on the PCI bus and
consists of a PCI bridge with autoconfiguration sup-
port, a real-time clock, and a number of SCSI host
adapters with hard disks. The real-time clock is
modeled after a MOSTEK 48T02 clock chip and
implements common date and time functionality
as well as two independent periodic interrupt
sources. The SCSI adapter is a variation of an
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Fig. 1. ML-RSIM system model.
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Adaptec AIC 7770-based SCSI host adapter and
supports multiple outstanding requests, disconnect
and reconnect transactions, and request queueing
[1]. Each adapter controls one SCSI bus that
accounts for arbitration delays, idle times, and data
transfer. Each SCSI bus connects an adapter to a
configurable number of SCSI disks. These disks
model seek and transfer times as well as an on-
board DRAM buffer. Seek times are calculated
using one of four algorithms: (a) a fitted curve based
on single-track, average, and full-stroke seek times,
(b) a three-point linear curve based on the same
parameters, (c) a constant seek time, or (d) instanta-
neous seeks with zero latency [8,11]. The sector-
based disk cache is used for data staging, prefetch-
ing and optional write buffering. The disk model
stores non-empty disk sectors in files on the simula-
tion host, thus maintaining simulated disk contents
across successive simulation sessions.

The ML-RSIM hardware models intentionally
do not represent any particular system. Instead, var-
ious features are modeled after a number of existing
prototypes, with the goal of producing a simulator
representative of a large class of real machines.
The system bus has similarities with SGI systems,
while the PCI addressing scheme follows the design
of a PowerPC-based workstation. Closely approxi-
mating the design of a particular system would have
facilitated a relatively straightforward port of an
open-source operating system, but would also have
imposed many undesirable idiosyncrasies of that
system. The approach taken for ML-RSIM bal-
ances the need to accurately model a realistic system
with the cost of implementing the minute and often
obscure details of a particular commercial system.

2.2. Lamix kernel

The Lamix kernel is a Unix-compatible multi-
tasking operating system specifically designed to
run on the ML-RSIM simulator. It consists of an
independently developed multitasking core and sig-
nificant portions of NetBSD source code that imple-
ment file system and device driver functionality. The
system ABI is Solaris-compatible; thus applications
compiled for Lamix can, in most cases, execute on
native Solaris hosts without modifications. Lamix
only requires that applications are statically linked
and do not use 64-bit instructions. This flexibility
allows users to test and debug applications on a
native host at significantly greater speed before sim-
ulating them. Since no special libraries or header
files are required, applications intended for simula-
tion can be compiled from nearly any programming
language with little restriction on the compiler used.
However, due to the restriction that applications
must be statically linked, arbitrary Solaris binaries
may not run on the simulator.

The Lamix kernel supports Unix-style process
management, signal handling, basic virtual memory
management, file I/O both to simulated disks and to
simulation host files, and Unix and Internet domain
sockets. All traps and interrupts are dispatched to
fully simulated trap handlers. Process management
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allows for the dynamic creation and termination of
processes, loading of executable files, and passing of
signals between processes. Virtual memory manage-
ment is fully functional, but its implementation is
somewhat simplified compared to other Unix vari-
ants. Page table management and address transla-
tion are accurately modeled, including TLB miss
handling via software traps. However, physical
memory management does not support paging to
disk. Instead it uses a static allocation scheme,
resulting in a fixed upper limit on the number of
concurrently active processes. In addition, mem-
ory-mapped files, and consequently dynamic link-
ing, are currently not supported. These restrictions
are partly a result of the incremental design of the
Lamix kernel. On the other hand, the static physical
memory management scheme helps make results
more easily reproducible, since small changes to
the order of memory allocation requests from appli-
cations can otherwise have a significant impact on
overall system behavior due to varying level-2 cache
conflicts.

The vnode-based file system layer demultiplexes
file I/O system calls to one of three file systems.
Both the standard BSD fast file system (FFS) and
a log-structured file system (LFS) are fully simu-
lated, including buffer cache and an LFS cleaner
daemon [10]. A newly-designed HostFS file system
imports the entire file structure of the simulation
host into the Lamix environment, thus giving appli-
cations access to files in the user�s home directory or
other locations. While the simulated file systems
accurately account for disk access delays, host files
are accessed instantaneously. The main purposes
of the HostFS are to provide a mechanism to move
files between the host and the simulated file system,
and to provide file I/O for applications where accu-
rately modeling the I/O overhead is not required,
such as accessing configuration files.

The socket layer supports Unix and INET
domain sockets. Unix sockets are fully simulated
using the BSD mbuf structure, while INET socket
operations are performed instantaneously. Conse-
quently, INET sockets are most useful for applica-
tions that do not require accurate modeling of
networking overheads and perform only a small
amount of communication, such as a database ser-
ver that reads relatively short request messages
before performing sizable amounts of disk I/O.

Underlying the file systems are several device
drivers, including SCSI disk and host adapter driv-
ers and a PCI bus driver. These device drivers are
ported from NetBSD with little modification and
accurately account for interrupt handling, synchro-
nization, and request queueing. In addition to these
physical devices, Lamix includes the RAIDframe
software RAID driver [6] and a pseudo disk device
for striping and device concatenation.

2.3. Simulation speed

One of the costs of the level of detail provided by
ML-RSIM is simulation speed. Generally, the
majority of simulation time is spent executing the
processor and cache models, with the instruction
decode, register rename and dependency check
stages being a significant portion of that time.

The instruction cache model, which is essential
for ML-RSIM�s support of operating system code,
is a considerable source of simulation overhead.
Furthermore, changes to the I-cache model param-
eters have a significant impact on simulation over-
head. To improve simulation speed, instructions
are decoded into an expanded format while being
fetched into the simulated I-cache. Consequently,
as the modeled I-cache becomes more effective, sim-
ulation speed increases as well. Traditionally, such
pre-decoding occurs only once for the entire pro-
gram at the beginning of a simulation run. How-
ever, ML-RSIM requires fully dynamic instruction
decoding to support operating system functionality
such as the loading of new binaries.

Other hardware components such as the I/O
devices, the system bus model, and the memory con-
troller are not significant contributors to the simula-
tion cost, since the event-driven implementation
invokes these models only when they are active.

Simulating a detailed operating system does not
significantly impact simulation speed beyond the
small additional cost of support for exception han-
dling and privileged state. Modeling complete sys-
tem calls and interrupt handlers requires more
simulation time than a simulator that performs
instantaneous pseudo-system calls. However, one
of the main goals of ML-RSIM is to provide insight
into the interactions between user and system code
and to allow detailed measurements of operating
system costs. Consequently, simulating kernel code
is not considered overhead but an important com-
ponent of the simulation process. The kernel com-
pletes initialization and mounts a simulated disk in
under 50 million simulated cycles, resulting in a run-
time overhead of approximately 1 min on a
900 MHz Sun Blade-1000. Thus, the overhead of
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booting Lamix for each simulation run is substan-
tial and does not warrant further optimization.

3. Validation methodology

In our view, simulator validation is the process of
quantifying the extent that the simulation tool faith-
fully models not only the functional behavior but
also the performance of real systems. Even though
most architectural simulators are used to evaluate
new techniques on hypothetical future computer
systems, a simulator should be able to approximate
the characteristics of existing systems. Such valida-
tion helps ensure that conclusions and design
trade-offs made with a given simulator are not
overly affected by modeling errors. Equally impor-
tant, validation uncovers the simulator�s weaknesses
and inaccuracies and lets users judge the suitability
of the tool for a particular purpose.

3.1. Methodology

This work uses LMBench [20] to compare vari-
ous characteristics of a reference system with the
corresponding simulated system. LMBench consists
of a set of benchmarks that measure microarchitec-
tural performance and basic operating system
behavior without relying on hardware performance
counters. While such counters are available in
nearly all modern systems, their functionality varies
considerably and often does not provide enough
detail to adequately compare against a simulated
system. Portable and well-known microbenchmarks
are able to report the same performance metrics for
all systems compared here, thus helping to discover
the correlation between specific details of the bench-
mark system and the simulator, such as cache and
memory behavior. Such validation establishes confi-
dence that the simulator accurately models the per-
formance of existing systems, and that trends and
changes observed on the simulation tool represent
real effects and not modeling artifacts.

To this end, two widely different simulator con-
figurations are compared with two representative
reference systems: a 175 MHz SGI Octane and a
900 MHz Sun Blade-1000. By quantifying and ana-
lyzing the simulators accuracy against such diverse
systems, the confidence in the validation process
itself is increased, and users of the tool are better
able to judge the simulators suitability for a specific
purpose. Comparing two diverse systems that differ
in instruction set, processor microarchitecture,
memory subsystem, and operating system gives fur-
ther insight into the simulator�s strengths and weak-
nesses in terms of its accuracy and its ability to
model a wide range of systems.

3.2. Experimental setup

The validation study presented here is a continu-
ation of work previously reported [17]. It uses the
same benchmark system and simulator configura-
tion, augmented with a second set of experiments
for a significantly different reference system.

The first reference system is an SGI Octane work-
station with one 175 MHz R10000 processor.
Although this system no longer represents current
high-performance workstation-class machines, it
provides a useful comparison point because its
architectural characteristics are well documented,
and because the R10000 processor�s microarchitec-
ture closely matches that modeled by ML-RSIM.
Moreover, many architectural aspects of this class
of machine have not changed significantly. Com-
bined with the more modern Sun Blade-1000 refer-
ence system, this system choice can demonstrate a
good correspondence between the simulator and a
broad class of real architectures. Table 1 summa-
rizes the key parameters of the reference system
and the matching simulator configuration. Other
parameters such as the number and latency of vari-
ous functional units are set to match published data
on the MIPS processor.

The second reference system is a 900 MHz Sun
Blade-1000 workstation. This machine is based on
the superscalar in-order UltraSPARC-III processor.
Since its instruction set matches that of the simula-
tion system, and the Lamix system call interface is
compatible with Solaris, identical benchmark execu-
tables can be used in this validation. Table 2 sum-
marizes the key parameters of both systems.
Again, other microarchitectural parameters are set
to match published values where appropriate.

Overall, these two reference systems cover a wide
range of workstation-class systems, thus providing
more meaningful insights through the validation
process. While the microarchitecture of the MIPS
processor closely matches that modeled by the sim-
ulator, the instruction set, operating system and
compiler differ, posing some challenges for the vali-
dation. On the other hand, the Sun reference system
is based on the same instruction set, but the proces-
sor microarchitecture differs from the simulator
processor model. To approximate the behavior of



Table 1
Architectural parameters of the SGI Octane reference and the corresponding simulator configuration

Parameter SGI Octane ML-RSIM

Processor 175 MHz MIPS R10000, MIPS ISA,
4-way superscalar, dynamically
scheduled

175 MHz SPARC ISA, 4-way
superscalar, dynamically scheduled

L-1 D-Cache 32 kbyte, 2-way set-assoc., 32-byte
lines, 1 cycle latency

32 kbyte, 2-way set-assoc., 32-byte
lines, 1 cycle latency

L-1 I-Cache 32 kbyte, 2-way set-assoc., 64-byte
lines, 1 cycle latency

32 kbyte, 2-way set-assoc., 64-byte
lines, 1 cycle latency

L-2 Cache 1 Mbyte, 2-way set-assoc., 128-byte
lines, 10 cycles latency

1 Mbyte, 2-way set-assoc., 128-byte
lines, 10 cycle latency

System bus 87.5 MHz, 64-bit multiplexed 87.5 MHz, 64-bit multiplexed
Memory controller SGI proprietary SDRAM, 4 Banks
Hard disk IBM UltraStar 9, 9.1 Gbyte

7200 rpm, 10 heads, 8420 cylinders,
1 Mbyte cache with 16 sectors

9.1 Gbyte, 7200 rpm, 10 heads, 8420
cylinders, 1 Mbyte cache with 16
sectors

OS IRIX 6.5, 64 bit System V,
multithreaded

Lamix, 32 bit SysV compatible, BSD-
based

Compiler MIPS Pro 6.2 Sun Workshop 6.0

Table 2
Architectural parameters of the Sun Blade-1000 reference and the corresponding simulator configuration

Parameter Sun Blade-1000 ML-RSIM

Processor 900 MHz UltraSPARC-III
SPARC V9 ISA 4-way
superscalar in-order

900 MHz SPARC V8plus ISA 4-way
superscalar dynamically scheduled

L-1 D-Cache 64 kbyte, 4-way set-assoc.,
32-byte lines, 1 cycle latency

64 kbyte, 4-way set-assoc., 32-byte
lines, 1 cycle latency

L-1 I-Cache 32 kbyte, 4-way set-assoc.,
32-byte lines, 1 cycle latency

32 kbyte, 4-way set-assoc., 32-byte
lines, 1 cycle latency

L-2 Cache 8 Mbyte, 2-way set-assoc.,
64-byte lines, 14 cycles
latency

8 Mbyte, 2-way set-assoc., 64-byte
lines, 14 cycles latency

System bus 150 MHz, 256-bit data path 150 MHz, 256-bit multiplexed
address/data

Memory controller SDRAM, integrated onto
CPU die

SDRAM, 2 Banks

Hard disk Seagate Cheetah, 36 Gbyte,
10,000 rpm, 4 heads, 24,620
cylinders, 4 Mbyte cache
with 16 sectors

36 Gbyte, 10,000 rpm, 4 heads,
24,620 cylinders, 4 Mbyte cache with
16 sectors

OS Solaris 8, 64 bit System V,
multithreaded

Lamix 32 bit SysV compatible, BSD-
based

Compiler Sun Workshop 6.0 Sun Workshop 6.0
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an in-order execution core, the issue window size of
the simulated processor is set to 12 entries, with at
most two outstanding memory references.

4. Validation results

4.1. Memory System Performance

Memory System Performance LMBench mea-
sures memory latency by traversing arrays of point-
ers. Depending on the array size, the observed
latency corresponds to different levels of cache or
main memory. Fig. 2 shows the resulting graphs
for both reference platforms and the simulator mod-
els for a 32-byte stride, as well as the squares of the
correlation coefficient for all strides.

Generally, the boundaries between the three
plateaus correctly identify the level-1 and level-2
cache sizes. Furthermore, the load latencies mea-
sured for each memory hierarchy level closely match



Fig. 2. Memory load latency for 32-byte stride and r2 values for all strides: (a) SGI Octane and (b) Sun Blade.
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the reference and the simulated systems. The most
significant discrepancy between the reference and
the simulated systems is generally observed at the
transition points between plateaus and is primarily
the result of differing interferences of the test array
with instructions and TLB entries in the level-2
cache. The r2 values shown in the tables to the right
are also known as the coefficient of determination
and are computed as the square of the Pearson cor-
relation coefficient. Generally, r2 values range from
zero to one and indicate the strength of the correla-
tion between the two systems. A value of one repre-
sents a perfect correlation, and a value of zero
represents no correlation. As the results demon-
strate, both ML-RSIM configurations are able to
closely track the memory latency of the reference
system for all experiments.

In addition to memory latency, LMBench mea-
sures memory bandwidth by accessing an array of
varying size in a variety of patterns. Similar to the
latency measurements, the resulting curves represent
bandwidth at different levels of the memory hierar-
chy. Measurements are taken using the bcopy and
bzero routines provided in the native C-library as
well as using unrolled copy, read, and write loops.
In addition, copy bandwidth is measured for con-
flicting and non-conflicting source and destination
arrays. Fig. 3 shows the bandwidth graphs for the
C-library bcopy routine, as well as the r2 values
for all bandwidth measurements.

On the reference platforms, the copy bandwidth
shows three distinct regions that correspond to the
cache and memory hierarchy levels. For the SGI
Octane configuration, ML-RSIM fails to reproduce
the steep bandwidth drop at the L-1 cache bound-
ary, but subsequently follows the reference platform
more closely. For the Sun Blade configuration, the
simulated system tracks bandwidth more closely
for small array sizes, but starts observing lower
bandwidth at array sizes below the level-1 cache
size. Overall, the correlation between the reference
system and the simulator is weaker than it is for
the latency experiments, especially for tests that
include a significant fraction of writes. Part of this
discrepancy is the result of differences in the cache
controller implementation that affect when and
how multiple outstanding requests are coalesced
and how writebacks are buffered. It is also worth
noting that the implementation of bcopy used on
the SGI Octane differs significantly from that used
on the Sun Blade and on the simulator. This differ-
ence is largely due to the different instruction sets



Fig. 3. Memory bandwidth of libc bcopy and r2 values for all bandwidth experiments: (a) SGI Octane and (b) Sun Blade.
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that result in different optimization points for each
system.

The reference UltraSPARC system uses a
64 kbyte write-through cache accompanied by a
2 kbyte write cache. Earlier experiments suggested
that this configuration is best approximated by a
64 kbyte write-back cache rather than by the
write-through cache model provided by ML-RSIM.
However, significant differences remain, resulting in
the bandwidth difference between the two systems
for array sizes close to the level-1 cache size. In
many cases such discrepancy at the boundary points
is not critical. However, care must be taken that
applications do not continually operate at these
boundary points, or else small perturbations will
result in large but meaningless differences in mea-
sured application performance. This same effect
can be observed on real systems as well as other
simulators.

4.2. Disk performance

Complementing the memory system measure-
ments, LMBench characterizes disk seek latency
and bandwidth. Seek latency is measured by reading
from specific sectors on the raw disk device and
hence includes rotational delay. Depending on the
initial rotational position of the disk, seek latency
varies considerably between seeks of similar dis-
tance. The resulting graphs are scatter plots with a
large variation between adjacent data points. To
improve readability, Fig. 4 shows seek latency for
the two systems summarized by polynomial trend
lines.

In both cases, ML-RSIM is able to approximate
the seek latencies of the reference disk through a fit-
ted curve based on published single cylinder, aver-
age, and full-stroke seek times. Generally, the
simulated disk model overestimates seek latency
for small distances, perhaps because there is insuffi-
cient detail in modeling SCSI bus and controller
overhead. Note that in both cases, the disk model
is parameterized from published seek latencies and
it not tuned to match the reference disk.

The disk bandwidth experiments reveal a short-
coming of the simulated disk models. The reference
disks are divided into multiple zones of varying sec-
tor densities to maximize capacity. Consequently,
read bandwidth varies from nearly 15 Mbyte/s on
the outside of the platter to 7.5 Mbyte/s for the
innermost cylinders for the IBM UltraStar drive
found in the SGI Octane, and varies between 48



0

4

8

12

16

20

0 3000 6000 9000
distance (cylinders)

se
ek

la
te

n
cy

 (
m

s)

ML-RSIM

SGI 

(a)

0

4

8

12

16

0 12500 25000 37500
distance (cylinders)

se
ek

la
te

n
cy

 (
m

s)

ML-

Sun

(b)

Fig. 4. Hard disk seek latency: (a) SGI Octane and (b) Sun Blade.
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and 28 Mbyte/s for the Seagate Cheetah drive in the
Sun Blade. ML-RSIM currently does not model
multiple zones, but rather assumes a fixed sector
density for all cylinders. As a result, disk bandwidth
is constant at 10 and 35 Mbyte/s respectively, inde-
pendent of the cylinder. These bandwidths closely
match the average bandwidth of both reference
disks. Unfortunately, detailed zoning information
is often not available for commercial disks, though
an approximation could be formulated through
experimentation. Such an approximation would
lead to a more accurate disk model, in regard to
bandwidth. However, it would place additional bur-
den on the user to correctly parameterize the model.
Furthermore, adding zoning details to the disk
model makes experimentation results sensitive to
the placement of files on the simulated disks. Files
on an otherwise empty simulated disk will be placed
on the outside, whereas in real systems with more
utilized disks, the test files may be placed elsewhere,
resulting in the simulator overestimating effective
bandwidth.
Table 3
System call latencies

Parameter Octane (ls) ML-RSIM (ls) Error (

getpid 2.61 2.57 1.5
read/dev/null 10.38 6.88 33.7
read file 10.38 7.76 70.9
write 12.24 6.21 49.2
stat 49.45 51.12 �3.3
fstat 8.00 4.08 49.0
open/close 73.76 59.61 19.1
select, 10 FDs 11.78 8.69 26.2
select, 60 fds 43.16 37.80 12.4
signal install 8.16 2.78 65.8
signal handler 31.95 8.25 74.1
pipe 64.94 52.98 18.4
socket 74.24 55.68 25.0
fork/exit 1592.75 12785.00 �702.7
fork/exec 4894.00 13484.00 �106.5
4.3. System call latency

In addition to microarchitectural characteristics,
LMBench measures the latencies of various system
calls. Results for both systems are shown in Table 3.
Relative error is calculated as latency difference
divided by the latency of the reference system.

Overall, system call latencies do not match the
reference and simulated systems as well as do the
architectural characteristics. In most other cases,
ML-RSIM/Lamix underestimates the cost of system
calls compared to the reference kernel. This error
leads to conservative results for studies that attempt
to optimize operating system performance, since
such evaluation uses a more efficient baseline sys-
tem. The reason for the large discrepancies is found
in the different structures of the two kernels. While
Lamix is a traditional non-preemptive 32-bit uni-
processor kernel, both Irix and Solaris are internally
multithreaded, support application-level threads
and 64-bit code, and are designed to scale to large
numbers of processors. The resulting synchronization
%) Blade (ls) ML-RSIM (ls) Error (%)

3 0.75 0.67 11.33
1 5.13 1.55 69.84
8 4.40 2.18 50.42
7 1.53 1.54 �1.12
8 5.60 15.34 �173.94
0 2.22 1.09 50.76
8 7.45 17.06 �128.89
3 8.97 2.06 77.07
2 44.42 8.29 81.33
8 1.42 0.55 61.50
8 16.52 2.11 87.24
2 16.37 20.69 �26.43
0 26.82 20.39 23.96
0 416.14 7566.00 �17181.30
3 577.80 7898.00 �12669.10
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overhead and the cost of supporting thread-specific
signals increases system call latencies on the refer-
ence systems.

However, in both cases the latency of the simple
getpid( ) system call closely matches that of the ref-
erence platform. This system call performs very little
actual work as it retrieves a single value from the
process control block, hence this experiment essen-
tially measures the cost of entering and leaving the
kernel. In many Unix kernels the relevant code
sequence is nearly identical for system calls, external
interrupts, and traps. Consequently, the good match
between the systems confirms that Lamix imple-
ments a realistic model for saving and restoring pro-
cess state.

Process creation is several times more expensive
on Lamix than it is on the reference platforms,
which indicates a deficiency in the simulator kernel.
Lamix�s simple memory management scheme does
not support copy-on-write, hence the fork( ) system
call copies the entire address space of the parent
process to the child. Given the small code and data
size of the microbenchmarks, the stack is a major
contributor to the memory footprint of the process.
Simulated measurements with a smaller stack lowers
process creation costs to within a factor of two of
the reference systems, confirming that the lack
of copy-on-write functionality is the main source
of this discrepancy.

This difference is a direct result of the original
design goal of ML-RSIM, and shows how simula-
tor design is a trade-off between accuracy and
complexity. One of ML-RSIM�s original design tar-
gets was to provide a platform to investigate and
optimize the cost of I/O operations. As such, pro-
cess creation is a necessary feature but does not
need to be modeled accurately. Implementing a
fully-featured virtual memory subsystem with
demand-paging and copy-on-write functionality
would have provided no additional benefit towards
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the original goals, but would have added consider-
ably to the overall complexity of the simulation
system.

Overall, the system call latency results bound the
application domain that ML-RSIM/Lamix is able
to simulate accurately. The cost of most system calls
is underestimated under Lamix, compared to the ref-
erence platforms. Consequently, studies concerned
with system call performance find in ML-RSIM
an aggressive baseline model and yield conservative
performance gains. However, care must be taken
that the unrealistically expensive fork( ) system call
does not overly influence results. Applications that
frequently spawn new processes are not well served
by the current implementation of this service. The
Lamix kernel itself uses this system call during boot
time to start the simulated applications, but gather-
ing of simulation statistics begins only after the
application has been loaded and thus does not
include the fork( ) system call.

4.4. Context switch cost

Context switch overhead is another area of large
discrepancy between the two systems, but at the
same time also shows large variation between sys-
tems and between successive experiments. LMBench
measures context switch overhead for different num-
bers of processes of differing working set sizes. In
addition to measuring the cost of saving and restor-
ing the process state, the benchmark also includes
the cost of cache and TLB miss due to the context
switch. Fig. 5 shows the context switch latency for
the reference and simulated systems, for a 16 kbyte
working set size. Note the different scale on the
y-axis between the two graphs.

In the default configuration, ML-RSIM overesti-
mates the context switch cost by a factor of two to
six, especially for small numbers of processes or
large working sets. Only for large numbers of
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processes is ML-RSIM able to approach the switch
latency of the reference system.

The main source of this discrepancy is the varia-
tion in physical memory layout that affects the num-
ber of level-2 cache conflicts. By default, ML-
RSIM�s static memory management scheme aligns
the physical address spaces of processes at powers
of two, thus maximizing L2-cache conflicts between
processes, resulting in worst-case context switch
costs. The third bar in each group in Fig. 5 shows
context switch costs for Lamix recompiled so as to
not align physical address spaces at powers of
two. Due to the reduction in L2-cache conflicts,
Lamix exhibits context switch costs that approach
that of the reference platform to within a factor of
two.

In practice, the impact and significance of this
difference will vary between experiments. In multi-
programming environments consisting of different
processes, level-2 cache conflicts are less likely since
different processes exhibit different memory layouts
and operate in different code and data regions. On
the other hand, multiple instances of the same pro-
gram will suffer from the worst-case level-2 cache
conflicts and thus overestimate context switch costs.
In such cases, changing the default alignment of
physical address spaces in Lamix will mitigate this
effect.

4.5. System call bandwidth

LMBench measures the bandwidth of several
operating system services, including reading of reg-
ular files from the file cache and interprocess com-
munication with Unix domain sockets and pipes.
Since these operations do not involve any I/O trans-
actions, the experiments essentially measure the cost
of copying data between protected address spaces.

When reading from an open file, ML-RSIM
overestimates the bandwidth of the SGI Octane
reference platform by 20–40%, resulting in a deter-
mination coefficient (r2) of 0.606. Since the micro-
architectural bandwidth measurements show a
stronger correlation, some of this discrepancy is
attributed to different implementations of the copy
routines in the two kernels. In addition, differences
in physical memory layout and in the resulting
L2-cache conflict misses can lead to significant dis-
crepancies, especially for small requests. Indeed,
the modeling error is largest for transfers of less
than 16 kbytes. When including opening and closing
the file in the overall data transfer, ML-RSIM
approximates the performance of the reference
platform more closely with a determination coeffi-
cient of 0.925.

For the Sun Blade platform, ML-RSIM similarly
overestimates effective bandwidth, resulting in
determination coefficients of 0.67 and 0.64. For this
platform, the overall shape of the bandwidth curves
matches better than that for the SGI Octane, but
both curves are slightly offset thus leading to a sim-
ilar overall error. File system differences play an
insignificant role, as the data transfer occurs only
between the file cache and a user buffer.

On the other hand, ML-RSIM generally underes-
timates interprocess communication bandwidth by
approximately 30%. Both Unix domain socket and
pipe bandwidth is measured between multiple pro-
cesses; consequently, results are very sensitive to
the context switch cost and the physical memory
layout. The same effect that increases context switch
cost in Lamix degrades interprocess copy band-
width. Both the source and destination buffers in
the two processes map to the same locations in the
level-2 cache, increasing the number of conflict
cache misses and reducing bandwidth. Tests on
the reference platforms also show a large variation
by nearly a factor of two between successive mea-
surements due to varying alignments of physical
memory in subsequent runs. A similar but smaller
variation can be reproduced in the simulator by
compiling Lamix with different parameters for the
physical memory allocation scheme.

Interestingly, for the Sun Blade system band-
width differs by a factor of two between Unix sock-
ets and pipes. Lamix, following the BSD design,
treats pipes as a special case of Unix sockets and
achieves nearly the same bandwidth in both cases,
whereas Solaris achieves significantly higher band-
width for pipes. In effect, the bandwidth observed
on the simulated system is close to the average of
the bandwidths measured on the reference system.
Again, these observations confirm that different ker-
nel organizations can lead to significantly different
behavior, and highlight the challenge of validating
a system simulator.

4.6. File system performance

LMBench measures file system performance as
the number of file creations and deletions performed
per second. The different file system structures of the
systems leads to a large discrepancy, as shown in
Table 4.



Table 4
File system performance in creations/deletions per second

File size
(kbyte)

SGI Octane
Irix 6.5

ML-RSIM
Lamix

Sun Blade
Solaris 8

ML-RSIM
Lamix

Sun Ultra 1/140
Solaris 6

Sun Ultra 60/450
Solaris 7

0 528/350 63/120 5489/11,959 162/167 38/87 56/119
1 210/247 35/64 3780/11,882 54/167 37/35 63/59
4 207/229 33/60 4012/11,409 56/167 28/37 52/63
10 218/227 31/56 718/9864 49/89 27/38 48/68
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Irix�s XFS is a modern journaling file system that
achieves significantly higher performance for these
metadata operations than does the BSD fast file
system. Similarly, the Solaris 8 implementation of
UFS achieves extremely high rates of metadata
updates, indicating that the original BSD consis-
tency requirement has been relaxed. For a more
realistic comparison with other FFS-based commer-
cial file systems, Table 4 also includes results for two
SPARC platforms running previous versions of
Solaris. These systems exhibit performance similar
to that of the simulator and confirm that while
Lamix�s FFS cannot be compared with XFS or
the latest Solaris UFS, it is comparable to previ-
ous-generation commercial FFS implementations.
A journaling file system as well as the recent soft-
updates optimization of UFS could be ported to
Lamix if desired. Note, however, that this perfor-
mance discrepancy only holds for metadata updates
such as creating and deleting files. Results from pre-
vious sections demonstrate that file read and write
bandwidth matches more closely that of the refer-
ence systems.

4.7. Validation conclusions

Simulator validation using microbenchmarks pro-
vides important insights into the accuracy of various
components. Overall modeling error determines the
degree of confidence in simulation results. Equally
important, the validation results define the applica-
tion domain that the simulation tool can model with
high accuracy. ML-RSIM/Lamix shows good corre-
lation with the reference systems in most architec-
tural aspects. These results are encouraging, since
they confirm that compute-intensive applications
without a major I/O component can be modeled
with high accuracy. The fact that such correlation
can be achieved for two widely different reference
systems demonstrates that the main design goal of
ML-RSIM, to be representative of an entire class
of systems, has been achieved.
ML-RSIM/Lamix underestimates the cost of
most system calls. This leads to results that are con-
servative for studies concerned with the perfor-
mance impact of operating system activity. Process
creation is unrealistically expensive due to the sim-
ple memory management scheme employed in
Lamix. Consequently, the simulation system is cur-
rently not suitable for workloads that rely on the
frequent creation of processes. A redesign of
Lamix�s virtual memory subsystem would be neces-
sary if ML-RSIM were to be used in an environ-
ment in which these effects are important.

File I/O and interprocess communication band-
width show a varying error compared to the refer-
ence systems. The main source of this error is the
differing physical memory management schemes of
the two kernels. On the reference platforms,
demand-paging, copy-on-write, and interactions
with other processes cause considerable variations
in physical memory layout between successive mea-
surements, with a resulting difference in copy band-
width due to varying level-2 cache conflicts. Lamix�s
simple and deterministic scheme can lead to unreal-
istically high or low numbers of cache conflicts that
do not change between successive simulation runs.
This difference is as much a result of the design goals
of ML-RSIM as it is inherent to simulators in
general.

ML-RSIM is designed to model basic I/O func-
tionality such as interrupt handling, DMA trans-
fers, and system calls. As such it does not
emphasize accurate memory management. While
implementing or porting a more complex memory
management subsystem is feasible, the resulting ker-
nel would be subject to much of the same non-deter-
minism that can be observed in real operating
systems. Small changes in the order of memory allo-
cation requests can lead to very different physical
memory layouts, thus making it more difficult to
reproduce and compare simulation results. Due to
the run-time cost of simulations, it is not usually
possible to repeat experiments multiple times to
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account for variability; thus, a deterministic simula-
tor is essential.

5. Related work

Existing execution-driven simulation tools fall
broadly into two categories. The first category, com-
posed of commonly-used architectural simulators
such as SimpleScalar [2] and RSIM [15], provides
detailed processor and memory hierarchy models
but focuses on user-level instructions only. These
tools are invaluable for studying compute-intensive
workloads, but the lack of operating system and I/O
device models makes them unsuitable for I/O inten-
sive applications. The SimpleScalar tool set targets
the detailed simulation of single-program user-level
code and as such is not able to account for operat-
ing system and I/O effects. RSIM is designed to sim-
ulate scientific shared-memory multiprocessor
workloads and consequently includes a simple net-
work model, but also lacks support for operating
system and I/O effects. ML-RSIM, on the other
hand, extends the modeling scope to include several
I/O devices, virtual memory, and a fully-simulated
operating system.

The second category of simulation tools includes
full-system simulators, such as SimOS [16], SimOS-
PPC [19], Pharmsim [5], SimICS [12], and M5 [3].
These system simulators are able to boot complete
operating systems and can thus simulate a much
broader set of workloads, including I/O and operat-
ing-system intensive codes. SimOS and its deriva-
tives as well as SimICS trade model fidelity for
simulation speed. Furthermore, SimOS and M5 cur-
rently boot commercial operating systems for which
source code is not readily available, restricting mod-
ifications that can be made by users to the hardware
models. The M5 system simulator focuses on accu-
rately modeling network effects, thus complement-
ing ML-RSIM�s emphasis on disk I/O. It currently
also runs only a commercial OS. ML-RSIM, on
the other hand, does not provide a complete
machine model and thus requires a custom OS.
However, the operating system kernel is freely avail-
able in source code form and the smaller scope of
the simulation system reduces its complexity and
development and maintenance effort.

Timing-first simulation lowers the development
and execution cost of accurate full-system simula-
tors by combining a timing-accurate but functionally
incomplete simulator with a functionally-correct
full-system simulator [13]. Since the usually more
complex timing simulator does not need to be func-
tionally correct, implementation of advanced fea-
tures can proceed incrementally, thus reducing
implementation effort. ML-RSIM takes a different
approach to reduce implementation cost and does
not provide a complete machine model. Conse-
quently, it is not able to fully leverage existing oper-
ating systems, but the reduced complexity of
hardware models and system software also results
in a system that is relatively easier to maintain.

Validation is an important part of developing a
simulation system, as it provides insight as to how
conclusions and design trade-offs based on simula-
tion may be aliased by modeling errors. In addition,
it can help establish a level of significance and
confidence in the final conclusions.

Several existing simulators have undergone a
similar validation process. A version of SimpleSca-
lar has been validated against a Compaq Alpha
workstation [7]. Performance counter measurements
and statistics collected by the simulator are com-
pared to provide a detailed view of simulator inac-
curacies. While this approach is able to pinpoint
sources of modeling errors more clearly than the
observation of microbenchmark results, it relies on
the availability of suitable performance counters.
In some cases, the exact specification of these
counters is not clear. Using LMBench to charac-
terize microarchitectural characteristics can elimi-
nate or complement the use of performance
counters. LMBench�s capabilities and scope exceed
those of most performance counters, providing
statistics not only related to isolated events, but also
related to whole system behavior. In fact, this study
shows that accurate microarchitectural models are
not sufficient to ensure that overall system behavior
will be accounted for correctly.

The FLASH group validated the simulator used
before and during prototype construction against
the final hardware [9]. Unlike other validation
efforts, this work investigates how accurately the
simulator predicts trends, rather than focusing on
absolute metrics such as execution time. Given that
many simulators are in fact used to predict the rel-
ative impact of new techniques, the FLASH
approach more closely measures the desired charac-
teristics of the tool. While parallel architecture
speedup and scalability trends are relatively easy
to recreate on actual hardware, microarchitectural
details such as instruction window size and memory
system organization cannot be varied easily in isola-
tion on real hardware. As a result, validation studies
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that compare absolute metrics are necessary when
investigating changes to microarchitectural details.

Calibration, the process of refining simulator
models until they match a hardware prototype to
a desired degree [4], is similar to validation but
has a different objective. Unless the hardware mod-
els are general enough to be applicable to a variety
of systems, this calibration can result in a simulation
tool that contains too many idiosyncrasies of one
specific system to be broadly applicable. The valida-
tion work presented here intentionally does not
curve fit or specialize hardware models since the
simulator is designed to represent a large class of
systems.

6. Conclusions

This article presents a high-fidelity simulation
system designed for I/O and operating system inten-
sive workloads. ML-RSIM combines accurate
models of modern workstation hardware with a
fully-functional Unix-compatible operating system.
ML-RSIM is based on RSIM v1.0 and extends the
original processor model with an I/O subsystem,
detailed bus and memory controller models and
support for privileged instructions and virtual mem-
ory. These extensions allow ML-RSIM to simulate
a Unix-like operating system. This unique combina-
tion of features makes the simulation environment
well-suited for exploring the interaction of system
architecture, system software and applications.

A validation study comparing the simulator to
two diverse reference systems demonstrates the level
of accuracy achieved by the system, but more
importantly highlights its strengths and weaknesses.
The validation process presented here uses
LMBench to compare microarchitectural character-
istics and operating system performance with an
SGI Octane and Sun Blade-1000 workstation.
Microarchitectural parameters generally show a
close correlation between ML-RSIM and the refer-
ence platforms, indicating that all major hardware
components are modeled accurately. System call
latencies and other operating system performance
parameters show considerable discrepancies between
the systems, largely as a result of the different inter-
nal structures of the operating system kernels. This
understanding and the detailed results presented
here help researchers to evaluate the suitability of
the tool for specific research questions and to judge
the validity of results. In particular, the simulator is
appropriate and useful for simulating workloads in
which kernel interaction is an important part of
the application, and where underestimating the cost
of various system calls would not invalidate the
experimental results. Currently ML-RSIM is less
appropriate for evaluating workloads that frequen-
tly create processes, unless improvements are first
made to the memory management subsystem of
Lamix.

ML-RSIM is freely available for researchers to
use and modify. In addition to several refinements
and functionality enhancements, a simultaneous
multithreading version is under development. The
ML-RSIM tools, like most available simulators,
provide the basis on which researchers implement
and test their own techniques and enhance-
ments. Ultimately it is the responsibility of those
researchers to ensure that the simulator being used
is the appropriate tool for the task and that the sim-
ulator provides sufficient fidelity and accuracy in the
areas that impact the conclusions drawn from its
use.
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