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Abstract. Because irregular applications have unpredictable memory
access patterns, their performance is dominated by memory behavior.
The Impulse configurable memory controller will enable significant per-
formance improvements for irregular applications, because it can be con-
figured to optimize memory accesses on an application-by-application
basis. In this paper we describe the optimizations that the Impulse con-
troller supports for sparse matrix-vector product, an important compu-
tational kernel, and outline the transformations that the compiler and
runtime system must perform to exploit these optimizations.

1 Introduction

Since 1985, microprocessor performance has improved at a rate of 60% per year;
in contrast, DRAM latencies have improved by only 7% per year, and DRAM
bandwidths by only 15-20% per year. One result of these trends is that it is
becoming increasingly hard to make effective use of the tremendous processing
power of modern microprocessors because of the difficulty of providing data in
a timely fashion. For example, in a recent study of the cache behavior of the
SQLserver database running on an Alphastation 8400, the system achieved only
12% of its peak memory bandwidth [11]; the resulting CPI was 2 (compared
to a minimum CPI of 1/4). This factor of eight difference in performance is a
compelling indication that caches are beginning to fail in their role of hiding the
latency of main memory from processors. Other studies present similar results
for other applications [4, 5].

Fundamentally, modern caches and memory systems are optimized for appli-
cations that sequentially access dense regions of memory. Programs with high
degrees of spatial and temporal locality achieve near 100% cache hit rates, and
will not be affected significantly as the latency of main memory increases. How-
ever, many important applications do not exhibit sufficient locality to achieve
such high cache hit rates, such as sparse matrix, database, signal processing,
multimedia, and CAD applications. Such programs consume huge amounts of
memory bandwidth and cache capacity for little improvement in performance.
Even applications with good spatial locality often suffer from poor cache hit
rates, because of conflict misses caused by the limited size of processor caches
and large working sets.
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Fig. 1. Remapping shadow addresses using the Impulse memory controller. For clarity
of exposition, we leave out how the Impulse controller supports non-contiguous physical
pages for A.

A number of ongoing projects have proposed significant modifications to con-
ventional CPU or DRAM designs to attack this memory problem: supporting
massive multithreading [1], moving processing power on to the DRAM chips [6],
or building completely programmable architectures [14]. While these projects
show promise, unconventional CPU or DRAM designs will likely be slower than
conventional designs, due to slow industry acceptance and the fact that proces-
sors built on current DRAM processes are 50% slower than conventional proces-
sors. In the Impulse project, we address the memory problem without modifying
conventional CPUs, caches, memory busses, or DRAMSs. Instead, we are building
an adaptable memory controller that will enable programs to control how data
is moved between cache and main memory at a fine grain, which will result in
significantly improved memory performance for irregular applications. The Im-
pulse memory controller implements this functionality by supporting an extra
level of address translation in the memory controller.

The Impulse controller allows applications to make use of unused physical
addresses, which it then translates into real physical addresses. Suppose a pro-
cessor exports 32 address lines across the memory bus, but has only 1GB of
memory installed. The remaining 3GB of physical address normally would be
considered invalid. The Impulse controller makes use of these otherwise unused
physical addresses by letting software specify mapping functions between these
so-called shadow addresses and physical addresses directly backed by DRAM.

Consider a simple function that calculates the sum of the diagonal of a dense
matrix, as illustrated in Figure 1. The left-hand side of the figure represents how
the data would be accessed on a conventional system, where the desired diago-
nal elements are spread across physical memory. Each diagonal element is on a
different cache line, and each such cache line contains only one useful element.



The right-hand side of the figure shows how data is accessed on an Impulse sys-
tem. The application would specify that the contents of the diagonal vector are
gathered using a simple strided function, using the remap operation. Once the
remap operation has been performed, the memory controller knows to respond
to requests for data in this shadow region by performing a gather-read opera-
tion from the physical memory storing A. The code then accesses the synthetic
data structure, diagonal, which is mapped to a region of shadow memory. By
accessing a dense structure, the application will see fewer cache misses, suffer
less cache pollution, and more effectively utilize scarce bus bandwidth and cache
capacity.

In Section 2, we use the sparse matrix-vector product algorithm from con-
jugate gradient to illustrate in detail two Impulse optimizations: (i) efficient
scatter-gather access of sparse data structures and (ii) no-copy page recoloring
to eliminate conflict misses between data with good locality and data with poor
locality. In Section 3, we briefly discuss several other optimizations that are en-
abled by an Impulse memory system, describe related projects, and summarize
our conclusions.

2 Sparse Matrix-Vector Multiplication

Sparse matrix-vector product is an irregular computational kernel critical to
many large scientific algorithms. For example, most of the time spent performing
a conjugate gradient computation [2] is spent in a sparse matrix-vector product.
Similarly, the Spark98 [9] kernels are all sparse matrix-vector product codes. In
this section, we describe several optimizations that Impulse enables to improve
the performance of sparse matrix-vector muliplication, and sketch the transfor-
mations that the compiler and runtime system must perform to exploit these
optimizations.

To avoid wasting memory, sparse matrices are generally encoded so that
only non-zero elements and corresponding index arrays need to be stored. For
example, the Class B input for the NAS Conjugate Gradient kernel involves a
75,000 by 75,000 sparse matrix with only 13,000,000 non-zeroes - far less than 1%
of the entries. Although these encodings save tremendous amounts of memory,
sparse matrix codes tend to suffer from poor memory performance because of the
use of indirection vectors and the need to access sparse elements of the dense
vector. In particular, when we profiled the NAS Class B conjugate gradient
benchmark on a Silicon Graphics Origin 2000, we found that its L1 cache hit
rate was only 58.5% and its L2 cache hit rate was only 92.7%.

Figure 2 illustrates the key inner loop and matrix encodings for conjugate
gradient. Each iteration multiplies a row of the sparse matrix A with the dense
vector z. On average, less than 1% of the elements of each row are non-zeroes,
and these non-zeroes are “randomly” distributed. While matrix-vector product
is trivially parallelizable or vectorizable, this code performs quite poorly on con-
ventional memory systems because the accesses to x are both indirect (via the
COLUMN [] index vector) and sparse. When z[] is accessed, a conventional memory



ROWS A X

° fori:=0ton-1do
sum:=0
for j := ROWS][i] to ROWS]Ji+1]-1 do

sum += DATA[j]*x[COLUMNI[j]]
% % % b[i] := sum
COLUMN

FEEEET TN

Fig. 2. Conjugate gradient’s sparse matrix-vector product. The sparse matrix A is
encoded using three arrays: DATA, ROWS, and COLUMN. A is encoded densely in DATA.
ROWS[i] indicates where the i*" row begins in DATA. COLUMN[i] indicates which column
of A the element stored in DATA[i] is in, and thus which value of z must be fetched
when performing the inner product.

system will fetch a cache line of data, of which only one element is used. Because
of the large size of x and A and the sparse nature of accesses to z during each
iteration of the loop, there will be very little reuse in the L1 cache — almost ev-
ery access to x results in an L1 cache miss. If data layouts are carefully managed
to avoid L2 cache conflicts between A and z, a large L2 cache can provide some
reuse of z, but conventional memory systems do not provide simple mechanisms
for avoiding such cache conflicts.

Because the performance of conjugate gradient is dominated by memory
performance, it performs poorly on conventional architectures. Two previously
studied solutions to this problem are to build main memory exclusively from fast
SRAM or support massive multithreading. The Cray T916, whose main memory
consists solely of fast (and expensive) SRAM, achieved 759.9 Mflops/second on
the NAS CG benchmark in July 1995 [12]. The Tera MTA prototype achieves
good single-node performance on the NAS conjugate gradient benchmark be-
cause its support for large numbers of cheap threads allows it to tolerate almost
arbitrary memory latencies [3]. However, both of these solutions are very expen-
sive compared to conventional hardware.

In Impulse, we take a different position — we employ off-the-shelf CPUs and
memories, but build an adaptable memory controller. OQur memory controller
supports two major optimizations for improving the memory behavior of sparse
matrix-vector product. First, it can perform scatter/gather operations, which
trades temporal locality in the second-level cache for spatial locality in the first-
level cache. Second, it can be used to color pages so as to better utilize physically
indexed, second-level caches. We discuss these optimizations in the following two
subsections.



setup x’[k] = x[COLUMN [k]]
for i := 0 to n-1
sum := 0
for j := ROWS[i] to ROWS[i+1]-1
sum += DATA[k] * x’[j]
b[i] := sum

Fig. 3. Code for sparse matrix-vector product on Impulse

2.1 Scatter/Gather

As described in Section 1, the Impulse memory controller will support scat-
ter/gather reads and writes. We currently envision at least three forms of scat-
ter/gather functions: (i) simple strides (ala the diagonal example), (ii) indirec-
tion vectors, and (iii) pointer chasing. The type of scatter/gather function that
is relevant to conjugate gradient is the second, the use of indirection vectors.

The compiler technology necessary to exploit Impulse’s support for scat-
ter /gather is similar to that used in vectorizing compilers. Figures 3 and 4illustrate
the code generated for the inner loop of conjugate gradient by a compiler de-
signed to exploit the Impulse memory controller. The compiler must be able
to recognize the use of indirection vectors, and download to the memory con-
troller a description of the data structure being accessed (x) and the indirection
vector used to specify which elements of this structure to gather (COLUMN[]).
This code can be safely hoisted outside of the inner loops, as shown in Figure 3.
After performing this setup operation, the compiler will then emit accesses to
the remapped version of the gathered structure (') rather than accesses to the
original structure ().

Scatter /gather memory operations take longer than accessing a contiguous
cache line, since the memory controller needs to perform multiple actual DRAM
accesses to fill the z’ structure. The low-level design details of the Impulse DRAM
scheduler are beyond the scope of this paper — suffice it to say that it is possi-
ble to pipeline and parallelize many of the DRAM accesses required to read and
write the sparse data through careful design of the controller. For optimal perfor-
mance, the compiler should tell the memory controller to sequentially prefetch
the elements of x’ (i.e., pre-gather the next line of x?), since it can tell that
x’ is accessed sequentially. When all of these issues are considered, the compiler
should unroll the inner loop according to the cache line size and software pipeline
accesses to the multiplicand vector, as shown in Figure 4. In this example, we
assume a cache line contains four doubles; for clarity we assume that each row
contains a multiple of eight doubles.

These optimizations improve performance in two ways. First, fewer memory
instructions need to be issued. Since the read of the indirection vector (COLUMN[])
occurs at the memory, the processor does not need to issue the read. Second,
spatial locality is improved in the L1 cache. Since the memory controller packs



setup x’[k] = x[COLUMN [k]]
for i := 0 to n-1
lo := ROWS[il
hi := ROWS[i+1]-1
sum := DATA[lo]l#*x’[lo]
for j := lo to hi step 8 do
sum += DATA[j+4]*x’ [j+4]
sum += DATA[j+1]#*x’ [j+1]
sum += DATA[j+2]*x’ [j+2]
sum += DATA[j+3]#*x’[j+3]
sum += DATA[j+8]xx’ [j+8]
sum += DATA[j+5]*x’ [j+5]
sum += DATA[j+6]*x’[j+6]
sum += DATA[j+7]1x*x’ [j+7]
sum -= DATA[hi+1]*x’ [hi+1]
b[i] := sum

Fig. 4. Code for sparse matrix-vector product on Impulse with strip mining and soft-
ware pipelining

the gathered elements into cache lines, the cache lines contain 100% useful data,
rather than only one useful element each.

Since a detailed simulation of the scatter/gather capability is not yet avail-
able, we performed a simple analysis of its impact. If we examine just the inner
loop of the original algorithm, it is dominated by the cost for performing three
loads (to DATA[i], COLUMN [i], and x [COLUMN [i]]). If we assume a 32-byte cache
line that can hold four doubles, we can see where Impulse wins in Table 1. Conv.
(Best) represents the best case performance of a conventional memory system.
In this case, the L2 cache is large enough to hold = and there are no L2 cache
conflicts between = and any other data. Conv. (Worst) represents the worst case
performance of a conventional memory system. In this case, either the L2 cache
is too small to hold a significant fraction of = or frequent conflicts between x
and other structures cause the useful elements of x to be conflicted out of the
L2 cache before they can be reused in a subsequent iteration. Because x is not
accessed directly in Impulse, its best and worst case are identical.

As we see in Table 1, Impulse eliminates four memory accesses, each of which
are hits in the L2 cache, from the best case for a conventional system. In place
of these four accesses, Impulse incurs the miss marked in the table with an
asterisk, which is the gathered access to x'. Compared to the worst case for a
conventional system, Impulse eliminates both the four L2 hits and four misses
to main memory. Note that except on machines with large L2 caches and very
careful data layout, the worst case is also the expected case because of the
large size of x and its poor locality. If we assume that software pipelining and
prefetching will hide cold misses to linearly accessed data, the misses to DATA[i],
COLUMN[i], and x’ [i] can be hidden. In this case, using Impulse will allow the
processor to perform floating point operations as fast as the memory system can



Load Conv. | Conv. |Impulse
(Best) |(Worst)

DATA[i] miss miss miss
COLUMN [1i] .5 miss| .5 miss
x[COLUMN[i]] |[L2 hit| miss
x’ [i] miss*
DATA[i+1] L1 hit | L1 hit | L1 hit
COLUMN [i+1] L1 hit | L1 hit
x [COLUMN[i+1]] || L2 hit| miss
x’ [i+1] L1 hit
Load Conv.| Conv. |Impulse
(Best)|(Worst)
DATA[i+2] L1 hit| L1 hit | L1 hit
COLUMN [i+2] ||L1 hit| L1 hit
x[COLUMN [i+2]]||L2 hit| miss
x’ [i+2] L1 hit
DATA[i+3] L1 hit| L1 hit | L1 hit
COLUMN [1+3] L1 hit| L1 hit
x [COLUMN [i+3]] ||L2 hit| miss
x’ [i+3] L1 hit

Table 1. Simple performance comparison of conventional memory systems (best and
worst cases) and Impulse. The starred miss requires a gather at the memory controller.

supply two streams of dense data (z' and DATA). However, since the non-linear
acccess to x [COLUMN[i]] cannot be hidden, a conventional machine will suffer
frequent high latency read misses, thereby dramatically reducing performance.

It is important to note that the use of scatter/gather at the memory controller
reduces temporal locality in the second-level cache. The remapped elements of
z' are themselves never reused, whereas a carefully tuned implementation of CG
would be able to reuse many elements of z cached in a large L2 cache. Such
a situation would approach the best case column of Figure 1, modulo conflict
effects in the L2 cache. In the next section, we propose a way to achieve the best
case using Impulse.

2.2 Page Coloring

As an alternative to gathering elements of x, which achieves the performance
indicated under the Impulse column of Table 1, Impulse allows applications to
manage the layout of data in the L2 cache. In particular, on an Impulse machine,
we can achieve the best-case memory performance for a conventional machine
on conjugate gradient by performing page coloring.

Page coloring optimizes the physical memory layout of data structures so
that data with good temporal locality (e.g., ) is mapped to a different part of a
physically-indexed cache than data with poor temporal locality (e.g., DATA, ROW,



and COLUMN). In a physically-indexed second level cache, physical pages from
different data structures can wind up being mapped to the same location. As a
result, data in these pages will tend to conflict with one another. For conjugate
gradient, the x vector is reused within an iteration, while elements of the DATA,
ROW, and COLUMN vectors are used only once each in each iteration. Thus, we
would like to ensure that = does not conflict in the L2 cache with the other
data structures. In the NAS CG benchmarks, x ranges from 600 kilobytes to 1.2
megabytes, and the other structures range from 100-300 megabytes. Thus, x will
not fit in most processor’s L1 caches, but can fit in many L2 caches.

On a conventional machine, page coloring is hard to exploit. Coloring requires
that the system not map data to physical pages that have the same “color” (i.e.,
map to the same portion of the cache) as data with good locality. If you wish to
devote a large percentage of your cache to data with good temporal locality, this
effectively means that you cannot use large portions of your physical memory,
which is impractical for problems with large data sets. In addition, coloring often
requires data to be copied between physical pages to eliminate conflicts, which
is expensive.

Impulse eliminates both of these problems, which makes page coloring sim-
ple and efficient. Since Impulse can map data structures to shadow physical
addresses, rather than real physical addresses, and because wasting shadow ad-
dress space does not waste physical memory, data with good locality can be
mapped to pages that do not conflict with other data. And, because of the extra
level of translation, this recoloring can be done without copying. In the case of
conjugate gradient, Impulse can be used to remap x to pages that map to most
of the physically-indexed L2 cache, and can remap DATA, ROWS, and COLUMNS to a
small number of pages that do not conflict with either x or each other. In effect,
we can use a small part of the second-level cache, e.g., two pages each for DATA,
ROWS, and COLUMNS, as a stream buffer [8].

3 Conclusions

We have described two optimizations that the Impulse controller supports for
irregular applications. An Impulse system can also improve the performance of
dense matrix kernels. Dense matrices are tiled to improve cache behavior, but the
effectiveness of tiling is limited by the fact that tiles do not necessarily occupy
contiguous blocks in caches. Tile copying [7] can improve the performance of
tiled algorithms by reducing cache conflicts, but the cost of copying is fairly
high. The Impulse controller allows tiles to be copied virtually. The cost that
virtual copying incurs is that read-write sharing between virtual copies requires
cache flushing to maintain coherence.

An Impulse memory controller can be used to dynamically build superpages,
so as to save processor TLB entries [13]. This optimization can dramatically
improve the performance of applications with large working sets. Unfortunately,
because the physical memory associated with a superpage must be contiguous
and aligned, superpages cannot easily be used to map user data on conven-



tional memory systems. However, by using shadow memory to map superpages,
and then remapping the shadow addresses back to the non-contiguous physi-
cal addresses corresponding to the user data, Impulse can create superpages for
arbitrarily shuffled user data.

An Impulse memory system also helps support efficient message passing.
First, its support for scatter/gather means that the memory controller, rather
than software, can handle the chore of gathering data into messages. As a result,
the Impulse controller can reduce the overhead of sending a message. Second, its
support for building superpages means that network interfaces need not perform
complex and expensive address translation. Instead, an Impulse controller could
handle the translations necessary for messages that span multiple pages.

Other research projects are looking at similar issues in designing memory
systems; we briefly describe a few of them. The Morph architecture [14] is al-
most entirely configurable: programmable logic is embedded in virtually every
datapath in the system. As a result, optimizations similar to those that we have
described are possible using Morph. The Impulse project is designing hardware
that will be built in an academic environment, which requires that we attack
hardware outside of the processor. The RADram project at UC Davis is build-
ing a memory system that lets the memory perform computation [10]. RADram
is a PIM (“processor-in-memory”) project similar to IRAM [6], where the goal
is to put processors close to memory. In contrast, Impulse does not seek to put
a processor in memory; instead, its memory controller is programmable.

In summary, the Impulse project is developing a memory system that will
help to improve the memory performance of irregular applications. We have
used sparse matrix-vector product as our motivating example, but we expect
that the ability to configure an Impulse memory system to various memory
access patterns will be useful for a wide range of irregular problems. We are
investigating both manual and automatic mechanisms for taking advantage of
the flexibility that Impulse provides.
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