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Abstract

Synchronization is a crucial operation in many parallel applications. Conventional synchronization mechanisms
are failing to keep up with the increasing demand for efficient synchronization operations as systems grow larger and
network latency increases.

The contributions of this paper are threefold. First, we revisit some representative synchronization algorithms in
light of recent architecture innovations and provide an example of how the simplifying assumptions made by typical
analytical models of synchronization mechanisms can lead to significant performance estimate errors. Second, we
present an architectural innovation called active memory that enables very fast atomic operations in a shared-memory
multiprocessor. Third, we use execution-driven simulation to quantitatively compare the performance of a variety of
synchronization mechanisms based on both existing hardware techniques and active memory operations. To the best
of our knowledge, synchronization based on active memory outforms all existing spinlock and non-hardwired barrier
implementations by a large margin.

Keywords: distributed shared-memory, coherence protocol, synchronization, barrier, spinlock, memory
controller

This effort was supported by the National Security Agency (NSA), the Defense Advanced Research Projects Agency (DARPA)
and Silicon Graphics Inc. (SGI). The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official polices or endorsements, either express or implied, of SGI, NSA, DARPA, or the US Gov-
ernment.

1



1 Introduction

Barriers and spinlocks are synchronization mechanisms commonly used by many parallel applications.

A barrier ensures that no process in a group of cooperating processes advances beyond a given point until all

processes have reached the barrier. A spinlock ensures atomic access to data or code protected by the lock.

Their efficiency often limits the achievable concurrency, and thus performance, of parallel applications.

The performance of synchronization operations is limited by two factors: (i) the number of remote ac-

cesses required for a synchronization operation and (ii) the latency of each remote access. The impact of

synchronization performance on the overall performance of parallel applications is increasing due to the

growing speed gap between processors and memory. Processor speeds are increasing by approximately

55% per year, while local DRAM latency is improving only approximately 7% per year and remote memory

latency for large-scale machines is almost constant due to speed of light effects [26].

For instance, a 32-processor barrier operation on an SGI Origin 3000 system takes about 232,000 cycles,

during which time the 32 R14K processors could have executed 22 million FLOPS. This 22 MFLOPS/barrier

ratio is an alarming indication that conventional synchronization mechanisms hurt system performance.

Over the years, many synchronization mechanisms and algorithms have been developed for shared-

memory multiprocessors. The classical paper on synchronization by Mellor-Crummy and Scott provides

a thorough and detailed study of representative barrier and spinlock algorithms, each with their own hard-

ware assumptions [21]. More recent work surveys the major research trends of spinlocks [2]. Both papers

investigate synchronization more from an algorithmic perspective than from a hardware/architecture angle.

We feel that a hardware-centric study of synchronization algorithms is a necessary supplement to this

prior work, especially given the variety of new architectural features and the significant quantitative changes

that have taken place in multiprocessor systems over the last decade. Sometimes small architectural innova-

tions can negate key algorithmic scalability properties. For example, neither of the above-mentioned papers

differentiates between the way that the various read-modify-write(RMW) primitives (e.g., test-and-set

or compare-and-swap) are physically implemented. However, the location of the hardware RMW unit,

e.g., in the processor or in the communication fabric or the memory system, can have a dramatic impact on

synchronization performance. For example, we find that when the RMW functionality is performed near

the memory/directory controller rather than via processor-side atomic operations, 128-processor barrier per-

formance can be improved by a factor of 10. Moving the RMW operation from the processor to a memory

controller can change the effective time complexity of a barrier operation to O(1) network latencies from

no better than O(N) in conventional implementations for the same basic barrier algorithm. This observa-

tion illustrates the potential problems associated with performing conventional “pen-and-pencil” algorithmic

complexity analysis on synchronization mechanisms.

While paper-and-pencil analysis of algorithms tends to ignore many of the subtleties that make a big

difference on real machines, running and comparing programs on real hardware is limited by the hard-

ware primitives available on, and the configurations of, available machines. Program trace analysis is hard
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because the hardware performance monitor counters provide limited coverage and reading them during pro-

gram execution changes the behavior of an otherwise full-speed run. Experimenting with a new hardware

primitive is virtually impossible on an existing machine. As a result, in this paper we use execution-driven

simulation to evaluate mixes of synchronization algorithms, hardware primitives, and the physical imple-

mentations of these primitives. We do not attempt to provide a comprehensive evaluation of all proposed

barrier and spinlock algorithms. Rather, we evaluate versions of a barrier from a commercial library and

a representative spinlock algorithm adapted to several interesting hardware platforms. Detailed simulation

helps us compare quantitatively the performance of these synchronization implementations and, when ap-

propriate, correct previous mis-assumptions about synchronization algorithm performance when run on real

hardware.

The rest of this paper is organized as follows. Section 2 analyzes the performance of a variety of barrier

and spinlock algorithms on a cc-NUMA (cache-coherent non-uniform memory access) system using dif-

ferent RMW implementations, including load-linked/store-conditional instructions, processor-side atomic

operations, simple memory-side atomic operations, and active messages. Section 3 presents the design of

active memory, which supports sophisticated memory-side atomic operations and can be used to optimize

synchronization performance. Section 4 describes our simulation environment and presents the performance

numbers of barriers and spinlocks implemented using a variety of atomic hardware primitives. Finally, Sec-

tion 5 draws conclusions.

2 Synchronization on cc-NUMA Multiprocessors

In this section, we describe how synchronization operations are implemented on traditional shared mem-

ory multiprocessors. We then describe architectural innovations that have been proposed in recent years to

improve synchronization performance. Finally, we provide a brief time complexity estimate for barriers and

spinlocks based on the various of available primitives.

2.1 Background

2.1.1 Atomic Operations on cc-NUMA systems

Most systems provide some form of processor-centric atomic RMW operations for programmers to imple-

ment synchronization primitives. For example, the Intel ItaniumTMprocessor supports semaphore instruc-

tions [14], while most major RISC processors [7, 16, 20] use load-linked/store-conditional instructions. An

LL(load-linked) instruction loads a block of data into the cache. A subsequent SC(store-conditional) in-

struction attempts to write to the same block. It succeeds only if the block has not been referenced since

the preceding LL. Any memory reference to the block from another processor between the LL and SC pair

causes the SC to fail. To implement an atomic primitive, library routines typically retry the LL/SC pair

repeatedly until the SC succeeds.
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( a )  naive coding

atomic_inc( &barrier_variable );
spin_until( barrier_variable == num_procs );

int count = atomic_inc( &barrier_variable );

( b )  "optimized" version

if( count == num_procs−1 )
      spin_variable = num_procs;
else
      spin_until( spin_variable == num_procs );

Figure 1. Barrier code.

A drawback of processor-centric atomic RMW operations is that they introduce interprocessor communi-

cation for every atomic operation. In a directory-based write-invalidate CC-NUMA system, when a proces-

sor wishes to modify a shared variable, the local DSM hardware sends a message to the variable’s home node

to acquire exclusive ownership. In response, the home node typically sends invalidation messages to other

nodes sharing the data. The resulting network latency severely impacts the efficiency of synchronization

operations.

2.1.2 Barriers

Figure 1(a) shows a naive barrier implementation. This implementation is inefficient because it directly

spins on the barrier variable. Since processes that have reached the barrier repeatedly try to read the barrier

variable, the next increment attempt by another process will compete with these read requests, possibly

resulting in a long latency for the increment operation. Although processes that have reached the barrier can

be suspended to avoid interference with the subsequent increment operations, the overhead of suspending

and resuming processes is typically too high to be useful.

A common optimization to this barrier implementation is to introduce a new variable on which processes

spin, e.g., spin variable in Figure 1(b). Because coherence is maintained at cache line granularity,

barrier variable and spin variable should not reside on the same cache line. Using a separate

spin variable eliminates false sharing between the spin and increment operations. However, doing so intro-

duces an extra write to the spin variable for each barrier operation, which causes the home node to

send an invalidation request to every processor and then every processor to reload the spin variable.

Nevertheless, the benefit of using a separate spin variable often outweighs its overhead, which is a classic

example of trading programming complexity for performance. Nikolopoulos and Papatheodorou [23] have

demonstrated that using a separate spin variable improves performance by 25% for a 64-processor barrier

synchronization.

We divide the total time required to perform a barrier operation into two components, gather and release.

Gather is the interval during which each thread signals its arrival at the barrier. Release is the time it takes

to convey to every process that the barrier operation has completed and it is time to progress.
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acquire_ticket_lock( ) {

}

 
  spin_until(my_ticket == now_serving);

  int my_ticket = fetch_and_add(&next_ticket, 1);

release_ticket_lock( ) {
  now_serving = now_serving + 1;
}

Figure 2. Ticket lock code

Assuming a best case scenario where there is no external interference, the algorithm depicted in Fig-

ure 1(b) requires at least 15 one-way messages to implement the gather phase in a simple 3-process barrier

using LL/SC or processor-side atomic instructions. These 15 messages consist primarily of invalidation,

invalidation acknowledgement, and load request messages. Twelve of these messages must be performed

serially, i.e., they cannot be overlapped.

In the optimized barrier code, when the last process arrives, it invalidates the cached copies of spin variable

in the spinning processors, modifies spin variable in DRAM, and we enter release phase. Every spin-

ning process needs to fetch the cache line that contains spin variable from its home node. Modern

processors employ increasingly large cache line sizes to capture spatial locality. When the number of pro-

cesses is large, this burst of reads to spin variable will cause congestion at the DRAMs and network

interface.

Some researchers have proposed barrier trees [12, 27, 33], which use multiple barrier variables organized

hierarchically so that atomic operations on different variables can be done in parallel. For example, in

Yew et.al.’s software combining tree [33], processors are leaves of a tree. The processors are organized

into groups and when the last processor in a group arrives at the barrier, it increments a counter in the

group’s parent node. Continuing in this fashion, when all groups of processors at a particular level in the

barrier tree arrive at the barrier, the last one to arrive increments an aggregate barrier one level higher in

the hierarchy until the last processor reaches the barrier. When the final process arrives at the barrier and

reaches the root of the barrier tree, it triggers a wave of wakeup operations down the tree to signal each

waiting processor. Barrier trees achieve significant performance gains on large systems by reducing hot

spots, but they require extra programming effort and their performance is constrained by the base (single

group) barrier performance.

2.1.3 Spinlocks

Ticket locks are widely used to grant mutual exclusion to processes in FIFO order. Figure 2 presents a typical

ticket lock implementation that employs two global variables, a sequencer (next ticket) and a counter

(now serving). To acquire the lock, a process atomically increments the sequencer, thus obtaining a

ticket, and then waits for the count to become equal to its ticket number. A process releases the lock by

incrementing the counter. Data races on the sequencer and propagation delays of the new counter value

degrade the performance of ticket locks rapidly as the number of participating processors increases. Mellor-
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Crummy and Scott [21] showed that inserting a proportional backoff in the spinning stage greatly improves

the efficiency of ticket locks on a system without coherent caches by eliminating most remote accesses to

the global now serving variable. On modern cache-coherent multiprocessors, where most of spinning

reads to now serving hit in local caches, there are very few remote accesses for backoff to eliminate.

Also, inserting backoff is not risk-free; delaying one process forces a delay on other processes that arrive

later because of the FIFO nature of the algorithm.

On a cache-coherent multiprocessor, T. Anderson’s array-based queuing lock [3] is reported to be one of

the best spinlock implementations [21]. Anderson’s lock uses an array of flags. A counter serves as the index

into the array. Every process spins on its own flag. When the lock is released, only the next winner’s flag

access turns into a remote memory access. All other processors keep spinning on their local cached flags.

Selective signaling improves performance, but the sequencer remains a hot spot. Nevertheless, selectively

signaling one processor at a time noticeably improves performance for large systems. To further improve

performance, all global variables (the sequencer, the counter and all the flags) should be mapped to different

cache lines to avoid false sharing.

2.2 Related Architectural Improvements to Synchronization

Many architectural innovations have been proposed over the decades to overcome the overhead induced

by cc-NUMA coherence protocols on synchronization primitives, as described in Section 2.1.

The fastest hardware synchronization implementation uses a pair of dedicated wires between every two

nodes [8, 29]. However, for large systems the cost and packaging complexity of running dedicated wires

between every two nodes is prohibitive. In addition to the high cost of physical wires, this approach cannot

support more than one barrier at one time and does not interact well with load-balancing techniques, such

as process migration, where the process-to-processor mapping is not static.

The fetch-and-φ instructions in the NYU Ultracomputer [11, 9] are the first to implement atomic opera-

tions in the memory controller. In addition to fetch-and-add hardware in the memory module, the Ultracom-

puter supports an innovative combining network that combines references for the same memory location

within the routers.

The SGI Origin 2000 [18] and Cray T3E [28] support a set of memory-side atomic operations (MAOs)

that are triggered by writes to special IO addresses on the home node of synchronization variables. However,

MAOs do not work in the coherent domain and rely on software to maintain coherence, which has limited

their usage.

The Cray/Tera MTA [17, 1] uses full/empty bits in memory to implement synchronized memory refer-

ences in a cacheless system. However, it requires custom DRAM (an extra bit for every word) and it is not

clear how it can work efficiently in presence of caches. The fetch add operation of the MTA is similar to

and predates the MAOs of the SGI Origin 2000 and Cray T3E.

Active message are an efficient way to organize parallel applications [5, 32]. An active message includes

the address of a user-level handler to be executed by the receiving processor upon message arrival using
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the message body as the arguments. Active messages can be used to perform atomic operations on a syn-

chronization variable’s home node, which eliminates the need to shuttle the data back and forth across the

network or perform long latency for remote invalidations. However, performing the synchronization op-

erations on the node’s primary processor rather than on dedicated synchronization hardware entails higher

invocation latency and interferes with useful work being performed on that processor. In particular, the load

imbalance induced by having a single node handle synchronization traffic can severely impact performance

due to Amdahl’s Law effects.

The I-structure and explicit token-store (ETS) mechanism supported by the early dataflow project Mon-

soon [4, 24] can be used to implement synchronization operations in a manner similar to active messages.

A token comprises a value, a pointer to the instruction to execute (IP), and a pointer to an activation frame

(FP). The instruction in the IP specifies an opcode (e.g., ADD), the offset in the activation frame where the

match will take place (e.g., FP+3), and one or more destination instructions that will receive the result of the

operation (e.g., IP+1). If synchronization operations are to be implemented on an ETS machine, software

needs to manage a fixed node to handle the tokens and wake up stalled threads.

QOLB [10, 15] by Goodman et al. serializes synchronization requests through a distributed queue sup-

ported by hardware. The hardware queue mechanism greatly reduces network traffic. The hardware cost

includes three new cache line states, storage for the queue entries, a “shadow line” mechanism for local

spinning, and a mechanism to perform direct node-to-node lock transfers.

Several recent clusters off-load synchronization operations from the main processor to network proces-

sors [13, 25]. Gupta et al. [13] use user-level one-sided MPI protocols to implement communication func-

tions, including barriers. The QuadricsTMQsNet interconnect used by the ASCI Q supercomputer [25]

supports both a pure hardware barrier using a crossbar switch and hardware multicast, and a hybrid hard-

ware/software tree barrier that runs on the network processors. For up to 256 participating processors, our

AMO-based barrier performs better than the Quadrics hardware barrier. As background traffic increases

and the system grows beyond 256 processors, we expect that the Quadrics hardware barrier will outperform

AMO-based barriers. However, the Quadrics hardware barrier has two restrictions that limit its usability.

First, only one processor per node can participate in the synchronization. Second, the synchronizing nodes

must be adjacent. Their hybrid barrier does not have these restrictions, but AMO-based barriers outperform

them by a factor of four in all of our experiments.

2.3 Time Complexity Analysis

In this section, we estimate the time complexity of the barrier and spinlock algorithms introduced in

Section 2.1. We do not survey all existing barrier and spinlock algorithms, nor do we examine the algorithms

on all (old and new) architectures. Instead, we use these commonly used algorithms to illustrate the effect

of architectural/hardware features that have emerged in the past decade and to identify key features of real

systems that are often neglected in previous analytical models of these algorithms.
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( b ) Memory−side atomic operation and Active Message

Figure 3. Gather phase of a three-process barrier.

It is customary to evaluate the performance of synchronization algorithms in terms of the number of re-

mote memory references (i.e., network latencies) required to perform each operation. With atomic RMW

instructions, the gather stage latency of an N-process barrier includes 4N non-overlappable one-way net-

work latencies, illustrated in Figure 3(a). To increment the barrier count, each processor must issue an

exclusive ownership request to the barrier count’s home node, which issues an invalidation message to the

prior owner, which responds with an invalidation acknowledgement, and finally the home node sends the

requesting processor an exclusive ownership reply message. If we continue to assume that network latency

is the primary performance determinant, the time complexity of the release stage is O(1), because the N

invalidation messages and subsequent N reload requests can be pipelined. However, researchers have re-

ported that memory controller (MMC) occupancy has a greater impact on barrier performance than network

latency for medium-sized DSM multiprocessors [6]. In other words, the assumption that coherence mes-

sages can be sent from or processed by a particular memory controller in negligible time does not hold. If

MMC occupancy is the key determinant of performance, then the time complexity of the release stage is

O(N), not O(1).

Few modern processors directly implement atomic RMW primitives. Instead, they provide some variant

of the LL/SC instruction pair discussed in Section 2.1. For small systems, the performance of barriers

implemented using LL/SC instructions is close to that of barriers built using atomic RMW instructions. For

larger systems, however, competition between processors causes a lot of interference, which can lead to a

large number of backoffs and retries. While the best case for LL/SC is the same as for atomic RMWs (4N

message latencies), the worst case number of message latencies for the gather phase of an LL/SC-based

barrier is O(N 2). Typical performance is somewhere in between, depending on the amount of work done

between barrier operations and the average skew in arrival time between different processors.

If the atomic operation functionality resides on the MMC, as it does for the Cray [28] and SGI [18]

machines that support MAOs, a large number of non-overlapping invalidation and reload messages can be

eliminated. In these systems, the RMW unit is tightly coupled to the local coherence controller, which

eliminates the need to invalidate cached copies before updating barrier variable in the gather phase.

Instead, synchronizing processors can send their atomic RMW requests to the home MMC in parallel,
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Hardware support Gather stage Release stage Total

Processor-side atomic O(N) O(1) or O(N) O(N )

LL/SC best case O(N) O(1) or O(N) O(N )

LL/SC worst case O(N2) O(1) or O(N) O(N 2)

MAO network latency bound O(1) O(1) O(1)

MAO MMC occupancy bound O(N) O(N ) O(N )

ActMsg network latency bound O(1) O(1) O(1)

ActMsg MMC occupancy bound O(N) O(N ) O(N )

Table 1. Time complexity of barrier with different hardware support.

and the MMC can execute the requests in a pipelined fashion (Figure 3(b)). Since the operations by each

processor are no longer serialized, the time complexity of the gather phase MAO-based barriers is O(N)

memory controller operations or O(1) network latencies, depending on whether the bottleneck is MMC

occupancy or network latency. Since MAOs are performed on non-coherent (IO) addresses, the release

stage requires processors to spin over the interconnect, which can by introduce significant network and

memory controller load.

Barriers built using active messages are similar to those built with MAOs in that the atomic increment

requests on a particular global variable are sent to a single node, which eliminates the message latencies

required to maintain coherence. Both implementation strategies have the same time complexity as measured

in network latency. However, active messages typically use interrupts to trigger the active message handler

on the home node processor, which is a far higher latency operation than pipelined atomic hardware oper-

ations performed on the memory controller. Thus, barriers built using active messages are more likely to

be occupancy-bound than those built using MAOs. Recall that when occupancy is the primary performance

bottleneck, the gather phase has a time complexity of O(N).

In terms of performance, spinlocks suffer from similar problems as barriers. In a program using ticket

locks for mutual exclusion, a process can enter the critical section in O(1) time, as measured in network

latency, or O(N) time, as measured in memory controller occupancy. A program using Anderson’s array-

based queuing lock has O(1) complexity using either measurement method.

Table 1 summarizes our discussions of non-tree-based barriers. If we build a tree barrier from one of the

above basic barriers, the O(N) and O(N 2) time complexity cases can be reduced to O(log(N)), albeit with

potentially non-trivial constant factors. In Section 4.2.2, we revisit some of these conclusions to determine

the extent to which often ignored machine features can affect synchronization complexity analysis.

3 AMU-Supported Synchronization

We are investigating the value of augmenting a conventional memory controller (MC) with an Active

Memory Unit (AMU) capable of performing simple atomic operations. We refer to such atomic operations

as Active Memory Operations (AMOs). AMOs let processors ship simple computations to the AMU
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Figure 4. Hardware organization of the Active Memory Controller.

on the home memory controller of the data being processed, instead of loading the data in to a processor,

processing it, and writing it back to the home node.

AMOs are particularly useful for data items with poor temporal locality that are not accessed many times

between when they are loaded into a cache and later evicted, e.g., synchronization variables. Synchroniza-

tion operations can exploit AMOs by performing atomic read-modify-write operations at the home node of

the synchronization variables, rather than bouncing them back and forth across the network as each proces-

sor tests or modifies them. Unlike the MAOs of Cray and SGI machines, AMOs operate on cache coherent

data and can be programmed to trigger coherence operations when certain events occur.

Our proposed mechanism augments the MIPS R14K ISA with a few AMO instructions. These AMO in-

structions are encoded in an unused portion of the MIPS-IV instruction set space. Different synchronization

algorithms require different atomic primitives. We are considering a range of AMO instructions, but for this

study we consider only amo.inc (increment by one) and amo.fetchadd (fetch and add). Semantically,

these instructions are identical to the corresponding atomic processor-side instructions, so programmers can

use them as if they were processor-side atomic operations.

3.1 Hardware Organization

Figure 4 depicts the architecture that we assume. A per-node crossbar connects local processors to the

network backplane, local memory, and IO subsystems. We assume that the processors, crossbar, and mem-

ory controller all reside on the same die, as will be typical in near-future system designs. Figure 4 (b)

presents a block diagram of a memory controller with the proposed AMU delimited within the dotted box.

When a processor issues an AMO instruction, it sends a command message to the target address’ home

node. When the message arrives at the AMU of that node, it is placed in a queue awaiting dispatch. The
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control logic of the AMU exports a READY signal to the queue when it is ready to accept another request.

The operands are then read and fed to the function unit (the FU in Figure 4 (b)).

Accesses to synchronization variables by the AMU exhibit high temporal locality because every partic-

ipating process accesses the same synchronization variable, so our AMU design incorporates a tiny cache.

This cache eliminates the need to load from and write to the off-chip DRAM for each AMO performed

on a particular synchronization variable. Each AMO that hits in the AMU cache takes only two cycles to

complete, regardless of the number of processors contending for the synchronization variable. An N-word

AMU cache supports outstanding synchronization operations on N different synchronization variables. In

our current design we model a four-word AMU cache. The hardware cost of supporting AMOs is negligible.

In a 90nm process, the entire AMU consumes approximately 0.1mm2, which is below 0.06% of the total die

area of a high-performance microprocessor with an integrated memory controller.

3.2 Fine-grained Updates

AMOs operate on coherent data. AMU-generated requests are sent to the directory controller as fine-

grained “get” (for reads) or “put” (for writes) requests. The directory controller still maintains coherence

at the block level. A fine-grained “get” loads the coherent value of a word (or a double-word) from local

memory or a processor cache, depending on the state of the block containing the word. The directory

controller changes the state of the block to “shared” and adds the AMU to the list of sharers. Unlike

traditional data sharers, the AMU is allowed to modify the word without obtaining exclusive ownership

first. The AMU sends a fine-grained “put” request to the directory controller when it needs to write a word

back to local memory. When the directory controller receives a put request, it will send a word-update

request to local memory and every node that has a copy of the block containing the word to be updated. 1.

To take advantage of fine-grained gets/puts, an AMO can include a “test” value that is compared against

the result of the operation. When the result value matches the “test” value, the AMU sends a “put” request

along with the result value to the directory controller. For instance, the “test” value of amo.inc can be set

as the total number of processes expected to reach the barrier and then the update request acts as a signal to

all waiting processes that the barrier operation has completed.

One way to optimize synchronization is to use a write-update protocol on synchronization variables.

However, issuing a block update after each write generates an enormous amount of network traffic, which

offsets the benefit of eliminating invalidation requests. In contrast, the “put” mechanism issues word-grained

updates, thereby eliminating false sharing. For example, amo.inc only issues updates after the last process

reaches the barrier rather than once every time a process reaches the barrier.

The “get/put” mechanism introduces temporal inconsistency between the barrier variable values in the

processor caches and the AMU cache. In essence, the delayed “put” mechanism implements a release

1Fine-grained “get/put” operations are part of a more general DSM architecture we are investigating, details of which are beyond

the scope of this paper.
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consistent memory model for barrier variables, where the condition of reaching a target value acts as the

release point.

3.3 Programming with AMOs

With AMOs, atomic operations are performed at the memory controller without invalidating shared

copies in processor caches. In the case of AMO-based barriers, the cached copies of the barrier count

are updated when the final process reaches the barrier. Consequently, AMO-based barriers can use the

naive algorithm shown in Figure 1(a) by simply replacing atomic inc(&barrier variable) with

amo inc(&barrier variable, num procs), where amo inc() is a wrapper function for the

amo.inc instruction.

The amo.fetchadd instruction adds a designated value to a specified memory location, updates the

shared copies in processor caches with the new value, and returns the old value. To implement spinlocks

using AMOs, we replace the atomic primitive fetch and add in Figure 2 with the corresponding AMO

instruction, amo fetchadd(). We also use amo fetchadd() on the counter to take advantage of the

“put” mechanism. Note that using AMOs eliminates the need to allocate the global variables in different

cache lines. Like ActMsg and MAOs, the time complexity of AMO-based barriers and spinlocks is O(1)

measured in terms of either network latency and O(N) in terms of memory controller occupancy. However,

AMOs have much lower constants than ActMsg or MAOs, as will be apparent from the detailed performance

evaluation.

The various architectural optimizations further reduce the constant coefficients.

Using conventional synchronization primitives often requires significant effort from programmers to write

correct, efficient, and deadlock-free parallel codes. For example, the Alpha Architecture Handbook [7] ded-

icates six pages to describing the LL/SC instructions and restrictions on their use. On SGI IRIX systems,

several library calls must be made before actually calling the atomic op function. To optimize performance,

programmers must tune their algorithms to hide the long latency of memory references. In contrast, AMOs

work in the cache coherent domain, do not lock any system resources, and eliminate the need for program-

mers to be aware of how the atomic instructions are implemented. In addition, we show in Section 4 that

AMOs negate the need to use complex algorithms such as combining tree barriers and array-based queuing

locks even for fairly large systems. Since synchronization-related codes are often the hardest portion of a

parallel program to code and debug, simplifying the programming model is another advantage of AMOs

over other mechanisms.

4 Performance Evaluation

4.1 Simulation Environment

We use a cycle-accurate execution-driven simulator, UVSIM, in our performance study. UVSIM models a

hypothetical future-generation SGI Origin architecture, including a directory-based coherence protocol [30]
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Parameter Value

Processor 4-issue, 48-entry active list, 2GHz
L1 I-cache 2-way, 32KB, 64B lines, 1-cycle latency
L1 D-cache 2-way, 32KB, 32B lines, 2-cycle latency
L2 cache 4-way, 2MB, 128B lines, 10-cycle latency
System bus 16B CPU to system, 8B system to CPU,

max 16 outstanding L2C misses, 1GHZ
DRAM 16 16-bit-data DDR channels
Hub clock 500 MHz
DRAM 60 processor-cycle latency
Network 100 processor-cycle latency per hop

Table 2. System configuration.

that supports both write-invalidate and fine-grained write-update, as described in Section 3.2. Each simu-

lated node contains two hypothetical next-generation MIPS microprocessors connected to a high-bandwidth

bus. Also connected to the bus is a hypothetical future-generation Hub [31], which contains the processor

interface, memory controller, directory controller, network interface, IO interface, and active memory unit.

Table 2 lists the major parameters of the simulated systems. The DRAM backend has 16 20-bit channels

connected to DDR DRAMs, which enables us to read an 80-bit burst every two cycles. Of each 80-bit

burst, 64 bits are data and the remaining 16 bits are a mix of ECC bits and partial directory state. The

simulated interconnect subsystem is based on SGI’s NUMALink-4. The interconnect employs a fat-tree

structure, where each non-leaf router has eight children. We model a network hop latency of 50 nsecs (100

cpu cycles). The minimum network packet is 32 bytes.

UVSIM directly executes statically linked 64-bit MIPS-IV executables and includes a micro-kernel that

supports all common system calls. UVSIM supports the OpenMP runtime environment. All benchmark

programs used in this paper are OpenMP-based parallel programs. All programs are tuned to optimize

performance on each modeled architecture and then compiled using the MIPSpro Compiler 7.3 with an

optimization level of “-O2”.

We have validated the core of our simulator by setting the configurable parameters to match those of an

SGI Origin 3000, running a large mix of benchmark programs on both a real Origin 3000 and the simulator,

and comparing performance statistics (e.g., run time, cache miss rates, etc.). The simulator-generated results

are all within 20% of the corresponding numbers generated by the real machine, most within 5%.

4.2 Benchmarks and Results

We employ four representative synchronization algorithms (a simple barrier, a combining barrier tree,

ticket locks, and array-based queuing locks) to evaluate the impact of architectural features on synchroniza-

tion performance. The simple barrier function comes from the SGI IRIX OpenMP library. The software

combining tree barrier is based on the work by Yew et al. [33]. Ticket locks and array-based queuing locks

are based on the pseudocode given in [21].
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Nodes CPUs Speedup over LL/SC barrier
ActMsg Atomic MAO AMO

2 4 0.95 1.15 1.21 2.10
4 8 1.70 1.06 2.70 5.48
8 16 2.00 1.20 3.61 9.11

16 32 2.38 1.36 4.20 15.14
32 64 2.78 1.37 5.14 23.78
64 128 2.74 1.24 8.02 34.74

128 256 2.82 1.23 14.70 61.94

Table 3. Performance of different barriers.

The starting time of all processes in each benchmark are synchronized. The elapsed time of each test

is reported as the average over ten invocations of the benchmark, i.e., for P processors the total number of

simulated spinlock acquisition-release pairs is 10 × P. An empty critical section is used in the spinlock

experiments.

We consider five different mechanisms for implementing each synchronization operation: LL/SC/instructions,

conventional processor-side atomic instructions (“Atomic”), existing memory-side atomic operations (“MAOs”),

software active messages (“ActMsg”), and AMOs. The LL/SC-based versions are used as the baseline. The

AMU cache is used for both MAOs and AMOs. We assume fast user-level interrupts are supported, so

our results for active messages are somewhat optimistic compared to typical implementations that rely on

OS-level interrupts and thread scheduling.

4.2.1 Non-tree-based barriers

Table 3 presents the speedups of four different barrier implementations compared to conventional LL/SC-

based barriers. A speedup of less than one indicates a slowdown. We vary the number of processors from

four (i.e., two nodes) to 256 (128 nodes), the maximum number of processors allowed by the directory struc-

ture [30] that we model. The ActMsg, Atomic, MAO, and AMO barriers all perform and scale better than

the baseline LL/SC version. When the number of processors is greater than 8, active messages outperform

LL/SC by a factor 1.70 (8 processors) to 2.82 (256 processors). Atomic instructions outperform LL/SC

by a factor of 1.06 to 1.37. Memory-side atomic operations outperform LL/SC by a factor of 1.21 at four

processors to an impressive 14.70 at 256 processors. However, AMO-based barrier performance dwarfs that

of all other variants, ranging from a factor of 2.10 at four processors to a factor of 61.94 for 256 processors.

The raw time for AMOs are 456, 552, 1488, 2272, 4672, 6784 and 9216, for 4, 8, 16, 32, 64, 128 and 256

processors, respectively, measured in clock periods of a 2GHz CPU.

In the baseline implementation, each processor loads the barrier variable into its local cache before in-

crementing it using LL/SC instructions. Only one processor succeeds at one time; other processors fail and

retry. After a successful update by a processor, the barrier variable will move to another processor, and

then to another processor, and so on. As the system grows, the average latency to move the barrier variable

between processors increases, as does the amount of contention. As a result, the synchronization time of

the base LL/SC barrier implementation increases dramatically as the number of nodes increases. This effect
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Figure 5. Cycles-per-processor of different barriers.

can be seen particularly clearly in Figure 5, which plots the per-processor barrier synchronization time for

each barrier implementation.

For the active message version, an active message is sent for every increment operation. The overhead

of invoking the active message handler for each increment operation dwarfs the time required to run the

handler itself. However, the benefit of eliminating remote memory accesses outweighs the high invocation

overhead, which results in performance gains as high as 182%.

Using processor-centric atomic instructions eliminates the failed SC attempts in the baseline version.

However, the performance gains are relatively small because processor-side atomic operations still requires

a round trip over the network for every atomic operation, all of which must be performed serially.

MAO-based barriers perform and scale significantly better than barriers implemented using processor-

side atomic instructions. At 256 processors, MAO-based barriers outperform the baseline LL/SC-based

barrier by nearly a factor of 15. This result further demonstrates that putting computation near memory

improves synchronization performance.

AMO-based barriers are four times faster than MAO-based barriers. This performance advantage derives

from the “delayed update” enabled by the test value mechanism and use of a fine-grained update protocol.

Since all processors are spinning on the barrier variable, every local cache likely has a shared copy of it.

Thus the total cost of sending updates is approximately the time required to send a single update multiplied

by the number of participating processors. We do not assume that the network has multicast support; AMO

performance would be even better if the network supported such operations.

Roughly speaking, the time to perform an AMO barrier equals (to + tp×P ), where to is a fixed overhead,

tp is a small value related to the processing time of an amo.inc operation and an update request, and P is

the number of processors being synchronized. This expression implies that AMO barriers scale well, i.e., the

total barrier time per processor is constant, which is apparent in Figure 5. In fact, the per-processor latency

drops off slightly as the number of processors increases because the fixed overhead is amortized by more

processors. In contrast, the per-processor time grows as the system grows for the other implementations.
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4.2.2 Barrier performance: a case of potential mis-estimates

In Section 2.3, we concluded that the time complexity of barriers built using processor-side atomic instruc-

tions is O(N), as measured in terms of the number of remote memory references. Given this estimate,

we would expect the per-processor time (total time divided by the number of processors) to be constant.

However, the experimental results visible in Figure 5 clearly contradict this expectation. ActMsg, for which

we correctly introduced an extra performance limiting parameter (MMC occupancy), also performs worse

than what we projected. The per-processor barrier time of ActMsg increases as the number of participating

processors increases.

The reason for these underestimates of time complexity is that in a non-idealized (real) system, factors

other than network latency and memory controller occupancy can extend the critical path of program ex-

ecution. Such factors include system bus contention, cache performance, an increase in one-way network

latency as a system grows, queuing delays in the network interface, limited numbers of MSHRs, and re-

transmissions caused by network interface buffer overflows. At first glance, each of these additional factors

might appear to be unimportant. However, our simulations reveal that any of them can be a performance

bottleneck at some point in the lifetime of a synchronization operation. Ignoring their accumulative effect

can easily lead one to overestimate the scalability of a given synchronization algorithm.

Up until now, typical synchronization complexity analyses have assumed that remote memory references

can be performed in a constant amount of time. In reality, very few large-scale multiprocessors support a

full crossbar interconnect, but rather employ on some kind of tree topology. As a result, remote memory

references are not constant, but instead depend on the distance between the source and the destination nodes.

For example, SGI Origin systems use an oct-tree in the intermediate routers between different nodes. The

cost of one remote memory reference is no less than 2*floor(logm(N)), where m is the factor of the

tree and N is the number of nodes that the source and destination of the message span.

While our measured relative performance of the different barrier implementations did not completely

invalidate our analytical estimates, the disparity between real system performance and analytical extrapo-

lation was significant. Given this experience, we caution against using over-simplified when analyzing the

performance of synchronization operations. On a complex computer system such as a modern cc-NUMA

multiprocessor, over-simplified system models can lead to incorrect or inaccurate assumptions as to what

factors determine performance. We strongly recommend that researchers and practitioners always perform

a validation check of their analytical performance predictions when possible, preferably through either real

system experiments or accurate software simulation.

4.2.3 Tree-based barriers

For all tree-based barriers, we use a two-level tree structure regardless of the number of processors. For each

configuration, we try all possible tree branching factors and use the one that delivers the best performance.

The initialization time of the tree structures is not included in the reported results. The smallest configuration
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CPUs Speedup over LL/SC barrier
LL/SC+tree ActMsg+tree Atomic+tree MAO+tree AMO+tree AMO

16 1.70 2.41 2.25 2.60 2.59 9.11
32 2.24 2.85 2.62 4.09 4.27 15.14
64 4.22 6.92 5.61 8.37 8.61 23.78

128 5.26 9.02 6.13 12.69 13.74 34.74
256 8.38 14.72 11.22 20.37 22.62 61.94

Table 4. Performance of tree-based barriers.
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Figure 6. Cycles-per-processor of tree-based barriers.

that we consider for tree-based barriers has 16 processors. Table 4 shows the speedups of tree-based barriers

over the baseline (flat LL/SC-based) barrier implementation. Figure 6 shows the number of cycles per

processor for the tree-based barriers.

Our simulation results indicate that tree-based barriers perform much better and scale much better than

normal barriers, which concurs with the findings of Michael et al. [22]. On a 256-processor system, all

tree-based barriers are at least eight times faster than the baseline barrier implementation. As can be seen in

Figure 6, the number of cycles-per-processor for tree-based barriers decreases as the number of processors

increases, because the high overhead associated with using trees is amortized across more processors and

the tree contains more branches that can proceed in parallel.

The best branching factor for a given system is often not intuitive. Markatos et al. [19] demonstrated that

improper use of trees can drastically degrade the performance of tree-based barriers to even below that of

simple flat barriers. Nonetheless, our simulation results demonstrate the performance potential of tree-based

barriers.

Despite all of their advantages, tree-based barriers still significantly underperform a flat AMO-based bar-

rier implementation for on number of nodes that we study. For instance, the best non-AMO tree-based

barrier (MAO + tree) is three times slower than a flat AMO-based barrier on a 256-processor system. In-

terestingly, AMO-based barrier trees underperform flat AMO-based barriers in all tested configurations.

AMO-based barriers include a large fixed overhead and a very small number of cycles per processor. Us-

ing tree structures on AMO-based barriers essentially introduces the fixed overhead more than once. The

fact that AMOs alone are better than the combination of AMOs and trees is an indication that AMOs do

not require heroic programming effort to achieve good performance. However, we expect that tree-based

barriers using AMOs will outperform flat AMO-based barriers if consider systems with tens of thousands
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CPUs LL/SC ActMsg Atomic MAO AMO
ticket array ticket array ticket array ticket array ticket array

4 1.00 0.48 1.08 0.47 0.92 0.53 1.01 0.57 1.95 1.31
8 1.00 0.58 1.64 0.56 0.94 0.67 1.07 0.59 2.34 2.03

16 1.00 0.60 1.79 0.65 0.93 0.67 1.07 0.62 2.20 2.41
32 1.00 0.62 1.48 0.64 0.94 0.76 1.08 0.65 2.29 2.14
64 1.00 1.42 0.60 1.42 0.80 1.60 0.64 1.49 4.90 5.45

128 1.00 2.40 0.91 2.60 1.21 2.78 1.00 2.69 9.28 9.49
256 1.00 2.71 0.97 2.92 1.22 3.25 0.90 3.13 10.36 10.05

Table 5. Speedups of different locks over the LL/SC-based locks.
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Figure 7. Performance of the different locks

processors. Determining whether or not tree-based AMO barriers can provide extra benefits on such very

large-scale systems is part of our future work.

4.2.4 Spin locks

Table 5 presents the speedups of the different ticket lock and array-based queuing lock implementations

compared to LL/SC-based ticket locks.

Using traditional hardware mechanisms, ticket locks outperform array-based queueing locks when the

system has 32 or fewer processors. Array-based queueing locks outperform ticket locks for larger systems,

which verifies the effectiveness of array-based locks at alleviating hot spots in larger systems.

AMOs greatly improve the performance of both styles of locks and negate the performance difference

between ticket locks and array-based locks. This observation implies that if AMOs are available we can use

simple locking mechanisms (ticket locks) without losing performance.

On a machine that does not support AMOS, the programmer could use the better of the two algorithms

depending on the system size to obtain the best performance. Figure 7 plots the performance of the best-

performing lock implementation (ticket or array) for each implementation strategy (LL/SC, atomic, MAOs,

AMOs, or ActMsg) as we vary the number of processors. For non-AMO platforms, this translates into using

ticket locks for up to 32 processors and array-based locks for larger systems.

Figure 7 helps us differentiate the benefits achieved by providing hardware synchronization support from

the benefits achieved by the array-based queue lock algorithm. In the range of 4 to 32 processors, ActMsg

noticeably outperforms the other conventional implementations. Otherwise, the curves of the various tradi-
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tional lock implementations (LL/SC, ActMsg, Atomic and MAOs) track closely despite their vastly different

implementations. This convergence reveals that (1) under low contention, the four non-AMO implementa-

tions are similar in efficiency except for ActMsg, and (2) the superiority of array-based locks in larger

systems derives from the algorithm itself, rather than from the architectural features of the underlying plat-

forms.

The relative performance of AMO-based ticket locks compared to the LL/SC ticket locks keeps increasing

until it reaches 10.36 at 256 processors. Thus, it appears that the performance advantage of AMO locks is a

result of the unique design of AMOs rather than the implementation strategy.
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Figure 8. Network traffic for ticket locks.

A major reason that AMO-based locks outperform the alternatives is the greatly reduced network traf-

fic. Figure 8 shows the network traffic, normalized to the baseline LL/SC version, of different ticket lock

implementations on 128-processor and 256-processor systems. In both systems, AMO-based ticket locks

generate significantly less traffic than other approaches. Interestingly, active message-based locks, which

are motivated by the need to eliminate remote memory accesses, require more network traffic than the other

approaches because the high invocation overhead of the message handlers leads to timeouts and retransmis-

sions on large systems with high contention.

5 Conclusions

To improve synchronization efficiency, we first identify and analyze the deficiencies of conventional

barrier and spinlock implementations. We demonstrate how apparently innocent simplifying assumptions

about the architectural factors that impact performance can lead to incorrect analytical results when analyz-

ing synchronization algorithms. Based on these observed problems, we strongly encourage complete system

experiments, either via in-situ experiments or highly detailed simulation, when estimating synchronization

performance on modern multiprocessors.

To improve synchronization performance, we propose that main memory controllers in multiprocessors

be augmented to support a small set of active memory operations (AMOs). We demonstrate that AMO-based

barriers do not require extra spin variables or complicated tree structures to achieve good performance.

We further demonstrate that simple AMO-based ticket locks outperform alternate implementations using
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more complex algorithms. Finally, we demonstrate that AMO-based synchronization outperforms highly

optimized conventional implementations by up to a factor of 62 for barriers and a factor 10 for spinlocks.

In conclusion, we have demonstrated that AMOs overcome many of the deficiencies of existing synchro-

nization mechanisms, enable extremely efficient synchronization at rather low hardware cost, and reduce

the need for cache coherence-conscious programming. As the number of processors, network latency, and

DRAM latency grow, the value of fast synchronization will only grow in time, and among the synchro-

nization implementations we studied, only AMO-based synchronization appears able to scale sufficiently to

handle these upcoming changes in system performance.
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