Active Memory Operations

Zhen Fang
Intel Corp.
2111 NE 25th Ave
Hillsboro, OR 97124
zhen.fang@intel.com

John B. Carter
School of Computing
University of Utah
Salt Lake City, UT 84112
retrac@cs.utah.edu

Abstract

The performance of modern microprocessors is increasingly lim-
ited by their inability to hide main memory latency. The problem is
worse in large-scale shared memory systems, where remote memory
latencies are hundreds, and soon thousands, of processor cycles. To
mitigate this problem, we propose the use of Active Memory Opera-
tions (AMOs), in which select operations can be sent to and executed
on the home memory controller of data. AMOs can eliminate sig-
nificant number of coherence messages, minimize intranode and in-
ternode memory traffic, and create opportunities for parallelism. Our
implementation of AMOs is cache-coherent and requires no changes
to the processor core or DRAM chips.

In this paper we present architectural and programming models
for AMOs, and compare its performance to that of several other mem-
ory architectures on a variety of scientific and commercial bench-
marks. Through simulation we show that AMOs offer dramatic per-
formance improvements for an important set of data-intensive oper-
ations, e.g., up to 50X faster barriers, 12X faster spinlocks, 8.5X-
15X faster stream/array operations, and 3X faster database queries.
Based on a standard cell implementation, we predict that the circuitry
required to support AMOs is less than 1% of the typical chip area of
a high performance microprocessor.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: General—System archi-
tectures; C.1.2 [Computer Systems Organization]: Processor Ar-
chitectures—Multiprocessors; B.8 [Har dwar €]: Performance and Re-
liability—General

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

1CS 07, June 18-20, 2007, Seattle, WA, USA.

Copyright 2007 ACM 978-1-59593-768-1/07/0006 ...$5.00.

Ali Ibrahim
AMD
4555 Great America Pkwy
Santa Clara, CA 95054
ali.ibrahim@amd.com

Lixin Zhang
IBM Austin Research Lab
11400 Burnet Rd
Austin, TX 78758
zhangl@us.ibm.com

Michael A. Parker
Cray, Inc.
1050 Lowater Rd
Chippewa Falls, W1 54729
map@cray.com

General Terms

Design, Performance

Keywords

Memory performance, Distributed Shared Memory, Cache coher-
ence, Thread synchronization, DRAM, Stream processing

1. INTRODUCTION

Distributed shared-memory (DSM) systems distribute physical mem-
ory across the nodes in the machine and implement coherence proto-
cols to provide the shared memory abstraction. In the predominant
directory-based CC-NUMA architecture, each block of memory is as-
sociated with a fixed home node, which maintains a directory structure
to track the state of all locally-homed data. When a process accesses
data that is not in a local cache, the local DSM hardware sends a
message to the data’s home node to request a copy. Depending on
the block’s state and the type of request, the home node may need to
send messages to additional nodes to service the request and maintain
coherence. The round trip memory access time of large DSM ma-
chines will soon be a thousand processor cycles [26]. It consists of
three parts: local DRAM latency, memory controller occupancy, and
inter-node network latency. Cross-section bandwidth is also a limiting
factor in the scalability of large DSM systems.

Caching improves memory performance and reduces remote traf-
fic, but large caches cannot eliminate coherence misses. Coherence
is maintained at the block-level (e.g., 128 bytes), and entire blocks
are moved across the network or invalidated, even when the processor
touches only a single word. For operations with low temporal local-
ity or significant write sharing, moving data from (potentially remote)
memory, through the cache hierarchy and into a register, operating
on it, and then (optionally) writing it back to memory is highly in-
efficient in time and energy. In these circumstances, caches provide
little benefit, and sometimes even hurt performance. The appalling
truth is that the sustained performance of large DSM computers for
many applications is less than 5% of peak performance, due largely
to memory system performance, and this trend is expected to worsen.
The unavoidable conclusion is that reducing remote coherence traffic

and inter-node data transfers is essential for DSM systems to scale
effectively.

We propose to add an Active Memory Unit (AMU) to each mem-
ory controller in a DSM system so that operations with poor tempo-
ral locality or heavy write sharing can be executed where the data
resides. We call AMU-supported operations Active Memory Oper-
ations (AMO), because they make conventional “passive” memory
controllers more “active”. AMOs are issued by processors and for-
warded to the home node of their operands, which acquires a globally
coherent copy of the data and then performs the operation in its local
AMU.

Used judiciously, AMOs can eliminate cache misses, reduce cache
pollution, and reduce network traffic, thereby reducing power con-
sumption and improving performance. AMOs are best used on data
with poor temporal locality or heavy write sharing, for which caching
induces substantial communication while providing no benefit. Us-
ing AMOs, instead of loading data across the network and operat-
ing on it locally, short messages are sent to the data’s home node,
which acquires a globally coherent copy of the data (iff it is cached
remotely), performs the requested operations, and (optionally) returns
the result to the requesting node.

In our design, AMUSs support both scalar operations that operate
atomically on individual words of data and stream operations that op-
erate on sets of words separated by a fixed stride length. All stream el-
ements must reside in a single page of memory, so individual streams
do not span multiple memory controllers. However, stream-stream
operations may involve streams that reside on different memory con-
trollers, as described in Section 3.2. Stream AMOs can be masked.
All AMOs are cache-coherent; the AMU hardware performs any nec-
essary coherency operations before it uses any data. Because AMUs
are integrated with the directory controller, making AMOs coherent
is fairly simple and fast (Section 3.3).

Figure 1 illustrates how AMOs can be used to implement a simple
SQL query that computes the average balance of all customers in the
“East” sales region. We perform three suboperations: (1) determine
which records have Region fields that match the “East” attribute, (2)
determine how many records matched in phase (1), and (3) calculate
the sum of the Balance fields of each record that matched in phase (1).
Each of these suboperations can be implemented as a single AMO.
The first AMO performs a strided st r eam stri ng cnp against
the Region field, where the stride is the size of each customer record.
The outcome of this AMO is a bitmask (Bitstream), where a “1” in po-
sition V of the stream indicates that the N'*" customer is in the “East”
region. The second AMO performs a popcount on Bitstream to de-
termine how many customers were in the “East” region. The third
AMO adds up the “Balance” fields for each customer in the “East”
region. The overall result of the query is simply the sum of the bal-
ances (result of the 3" AMO) divided by the number of customers in
the east region (result of the 2"¢ AMO). This example, while simple,
illustrates a number of interesting features of our AMO implementa-
tion, which we will describe in Section 3.2.

For many operations, an AMO can replace thousands of memory
block transfers. As described in Section 5, AMOs can lead to dramatic
performance improvements for data-intensive operations, e.g., up to
50X faster barriers, 12X faster spinlocks, 8.5X-15X faster stream/array
operations, and 3X faster database queries. Finally, based on a stan-
dard cell implementation, we predict that the circuitry required to sup-
port AMO:s is less than 1% of the typical chip area of a high perfor-
mance microprocessor.

2. RELATED WORK

Processor-in-memory (PIM) systems incorporate processing units
on modified DRAM chips [11, 18, 24, 7, 36]. Both AMOs and PIMs

exploit affinity of computation to main memory, but they differ in
three important ways. First, AMOs use commodity DRAMs, which
should have higher yield and lower cost than PIMs. Second, the pro-
cessors in a PIM reside below the architecture level where coherence
is maintained. Thus, if the data required by a PIM operation re-
sides off-chip, PIMs effectively becomes a form of non-coherent dis-
tributed memory multiprocessor, with all of the attendant complex-
ities. AMOs utilize existing coherence mechanisms and operate on
coherent data. Third, PIMs employ merged logic-DRAM processes,
which are slower than processes tuned for logic. The major bene-
fit of PIMs is the very high bandwidth of the on-chip connections
between processors and storage. However, high-performance mem-
ory controllers support a large numbers of DRAM busses and thus
have raw bandwidth comparable to what is available within a single
DRAM. We strongly believe that the appropriate place to perform of-
floaded computation is at the memory controller, not on the DRAMs,
which has most of the bandwidth and power advantages of PIMs and
eliminates many of the complexities that PIMs introduce.

Several research projects have proposed adding intelligence to the
memory controller. The Impulse memory controller [40] uses an ex-
tra level of physical address remapping to increase or create spatial
locality for stride and random accesses. Active Memory [16] extends
Impulse to multiprocessors. Solihin et al. [33] add a general-purpose
processor core to a memory controller to direct prefetching into the
L2 cache. These systems improve the way in which conventional pro-
cessors are “fed” memory, but do not actually compute on the data.

Several systems support specialized memory-side atomic opera-
tions for synchronization. The NYU Ultracomputer [9] was the first to
implement atomic instructions in the memory controller. The FLASH [19]
multiprocessor supported atomic f et ch_ops, which were subsequently
supported by the SGI Origin 2000 [20] and Cray T3E [29]. The
SGI Origin 2000 implements a set of memory-side atomic operations
(MAQs) in the memory controller that are triggered by writes to spe-
cial 10 addresses. MAOs are non-coherent and rely on software to
maintain coherence.

Although they are performed solely in software, Active Messages [37]
are similar in spirit to AMOs. Like AMOs, active messages work by
moving computation to data to avoid moving data between proces-
sors. An active message includes the address of a user-level handler
to be executed upon message arrival, with the message body as its
argument. Because they are handled in software, active messages suf-
fer from a number of overheads, e.g., taking an interrupt, flushing the
instruction pipeline, switching to the specified message handler, and
polluting the caches while the handler runs. Also, the active message
programmer must know which node holds the desired data, whereas
the target of an AMO is extracted by hardware based on the data’s ad-
dress. Nevertheless, active messages often perform well for the same
reason that AMOs do - it is often far less efficient to load data over
the network than to simply operate on it in place.

A number of researchers have proposed offloading select computa-
tion from the main processor, e.g., several recent cluster interconnects
support distributed synchronization operations [25, 35], while Ahn et
al. [2] propose adding specialized vector operations to the memory
system to support vector scatter-add.

FLASH [19] and Tempest/Typhoon [28] incorporate a programmable
engine on the memory/network controller. To the best of our knowl-
edge they never explored the value of offloading user computation to
the protocol processors. Rather, the protocol processors were used
to support powerful coherence protocols and to facilitate high-speed
message transfer.

3. AVTIVE MEMORY OPERATIONS

(a) the SQL query:
SELECT AVG (Balance)
FROM customers
WHERE Region = "East"

(b) Algorithm for AMOs:
1. stream_Region .EQ. "East" ?
2. Popcount over Bitstream

— Bitstream

3. Sum over stream_Balance under mask _Bitstream spinson

(c) Pseudo code using AM Os:

write Region, stride, " EAST", Bitstream
write opcode_EQ

write Bitstream
write opcode_POP

write Balance, Bitstream, stride
write opcode_SUM, return-val addr, GROUP_END

return-val addr

; Bitstream as dest stream

; Bitstream as src stream

; Bitstream asmask

Figure 1. Example of using AMOs for a simple SQL query

[Mnemonic [Result]
inc, dec, cmp-swp, fetch-aop, update scalar
memcopy, memset, pgfetch, pgsave stream of scalars
max, min, sum, popcount scalar (reduction)
S-slop, S-s-s-lop, S-string-EQ stream of bits
S-s-aop, S-S-aop, S-S-lop stream of scalars or bits

Table 1. Supported AMOs (Legend:
aop=arithmetic_op, lop=logi c_op))

S=stream, s=scalar,

3.1 Supported Operations

Our AMU design supports two types of operations: scalar oper-
ations that operate on single words and stream operations that oper-
ate on sets of words within a page. Table 1 lists the operations sup-
ported, which were selected based on application requirements and
implementation complexity. Most AMOs include integer and single
precision floating point versions. All AMOs are coherent; the AMU
performs all necessary coherency operations before it uses data.

Scalar operations perform atomic arithmetic operations on indi-
vidual words of data, similar to the f et ch_and_op operations of
many existing architectures. Scalar operations are particularly useful
for supporting efficient synchronization. Unlike synchronization op-
erations implemented at the processors, e.g., using load-linked/store-
conditional (LL/SC), AMO-based synchronization does not require
cache lines to bounce between processors.

Stream oper ations have SIMD-like semantics: one arithmetic or
logic operation is applied to every element of a stream. In our design,
a stream is a set of words separated by a fixed stride length, all of
which reside in a single page of memory. Thus, individual streams do
not span multiple memory controllers, but stream-stream operations
may involve streams that reside on different memory controllers, as
described in Section 3.2. Stream operations can be optionally predi-
cated using a bit mask, similar to masked operations in vector ISAs.

We support a mix of stream-scalar, stream-reduction, and stream-
stream operations, as shown in Table 1. For example, a stream-scalar
add adds a scalar value to every element in the stream, which gener-
ates a second stream, while stream-scalar . GT. compares every ele-
ment in the stream against a given scalar value and creates a boolean
result stream. We believe these operations are general enough to cover
a large portion of the needs of data-intensive applications.

Since primitive stream operations are restricted to streams that re-
side entirely within a single page, stream operations that span larger
ranges need to be implemented as a series of AMOs on smaller ranges,
which can be performed in parallel.

3.2 Programming Model

In our current design, the basic programming model for AMOs
is that of decoupled (asynchronous) operations. The local processor
issues AMOs and then can perform other operations while the AMO
is underway. When the local processor needs the return value or needs
to know that the AMO operation has completed, it spins waiting on a
completion bit to be set.

We employ memory-mapped uncached 1/O space reads and writes
to communicate between the processor and AMO engine. To issue
an AMO, a processor writes the appropriate values (e.g., command,
address(es), and scalar operand(s)) to a set of 1/0 space addresses that
correspond to an AMO issue register on the local memory controller.
To read the result of an AMO, a processor reads from an 1/O space
address that corresponds to an AMO return register allocated to the
issuing process. Associated with each AMO return register is a full-
empty (F/E) bit that is used to signal when an AMO has completed
and its return value (if any) is ready. These I/O addresses are allo-
cated and managed by the OS via special system calls invoked during
process initialization. This approach is similar to that used to operate
on E-registers in the Cray T3E [29].

Basic AMOs

To initiate an AMO, software writes the arguments to an AMO regis-
ter in the local memory controller. The AMU clears the F/E bit of the
associated AMO return register, determines which node is the home
for the specified data, and sends a request packet to the AMU on the
home node of the data on which the operation is being performed.
Each AMU has an external TLB to perform virtual to physical trans-
lation, similar to the Cray T3E [29] and Impulse [40]. If necessary, the
home node AMU interacts with other processors to acquire a globally
coherent copy of the data in the appropriate sharing mode. Once the
AMU has a coherent copy of the data, it performs the operation and
signals completion to the processor that issued the AMO, optionally
returning a scalar result. For streamed AMOs that span multiple cache
lines within a single page, the home AMU acquires coherent copies
of each cache line touched by the AMO. When the result returns, it
is placed in the specified AMO return register and the corresponding
F/E bit is set. The requesting process is expected to test the appropri-
ate F/E bit periodically to determine when the operation is complete
and the return value is available.

Grouped AMOs and temporary streams

Semantically, AMOs operate on DRAM values. Logically AMO data
is read from main memory and results are written back to main mem-
ory, in addition to the optional scalar value that can be returned to the
issuing processor. However, for operations involving several AMOs,
e.g., the simple database operation presented in Figure 1, it is inef-
ficient to write intermediate results back to main memory, only to
be immediately re-read and reused as part of a subsequent AMO. To
overcome this potential inefficiency, we allow programmers to group
related AMOs and specify that certain streams are temporary streams
whose values need not persist beyond the end of the current AMO
group. Programmers mark the end of an AMO group by setting the
GROUP_END bit in the AMO opcode. Programmers identify tempo-
rary streams by using special (otherwise invalid) addresses for their
locations. Temporary streams can be used to pass intermediate values
efficiently stream operations. For example, the Bitstream bit mask
used in the database example shown in Figure 1 would be an ideal
candidate to be treated as a temporary stream. Temporary streams
are not written back to DRAM and can be bypassed directly from
the source ALU to the destination ALU. If the Bitstream value were
useful in some later computation, the programmer can specify a real

memory location where it should be written. The hardware required
to support grouped AMOs and the way in which grouped AMO oper-
ations are implemented is described in more detail in Section 3.3.

M asked Operations

The third AMO in Figure 1 illustrates a masked AMO, which is anal-
ogous to the masked vector operations present in many vector ISAs.
The Bitstream stream is used as a bit mask to indicate which ele-
ments of the strided Balance stream should be summed together. Typ-
ically the bitmask used in masked operations are generated as part of
a grouped AMO and then discarded, as in this example, but bitmasks
can also be stored in memory and reused.

Other Programming Considerations

Since stream AMOs operate only on streams that reside within a sin-
gle page, operations on larger streams must be performed as multiple
page-grained AMOs. The programming burden for doing so is modest
and enables operations on different portions of the stream to proceed
in parallel if the data is homed by multiple nodes.

The streams in a single AMO or grouped AMOs can have different
home nodes. In these cases, the AMO(s) is(are) sent to the home
node of any of the streams, and remote streams are loaded across the
interconnect (coherently) from their respective home nodes. In the
case of grouped AMOs, all AMOs within a group are handled by a
single AMU.

Currently we manually write AMO codes using a combination of
C-language libraries and macros. We argue that current compiler
technology should be able to generate decent-quality AMO codes
from serial or vectorized non-AMO scientific computation programs,
though it is extremely challenging to automate the code transforma-
tion process for commercial applications. Using scalar AMOs is as
simple as substituting an AMO wrapper function for the legacy func-
tion name (e.g., barri er) or instruction (e.g., f et ch-op). The
conerns arise primarily when using stream AMOs.

Stream AMOs can be considered a special class of vector opera-
tions, although with completely different hardware implementations.
Both break array operations into a loop of vector computations, each
of which is a SIMD operation. The difference in operation granular-
ity and hardware implementations has significant performance impli-
cations, but the compiler technology that is required to generate both
versions of the SIMD codes is largely the same. Vectorizing compil-
ers have been successfully built for Fortran and C. Leveraging these
technologies to build an AMO compiler is part of our future work.
A key step in developing such a compiler is building a cost function
that can predict the performance of an application if it used AMOs.
We have developed an analytical model that can predict AMO perfor-
mance. Details of the model are in [8].

Automatic Computation L ocalization

OpenMP, the de facto standard for shared-memory programming, al-

lows the programmer to parallelize loops without consideration for

the underlying memory distribution. This often results in unsatisfac-

tory performance due to high remote access costs. To circumvent this

problem, programmers often take great care to create computation-

data affinity, i.e., to perform operations on the node where data is
homed. However, if the data access pattern changes after initial data

placement, which is common when the OS employs a first-touch mem-
ory allocation policy or when threads migrate between nodes, the

computation-data affinity is lost. In contrast, AMOs inherently achieve
computation-to-data affinity with no extra programming effort be-
cause AMOs are dynamically routed to the node that homes the data

on which they operate. Should threads migrate or data be redis-

tributed, AMOs will continue to be routed to the appropriate (new)

nodes for execution.

Context Switches, AMO Register Virtualization, and Exception

Handling

In our design, threads explicitly allocate AMO issue and return regis-

ters via system calls. Upon a context switch, the OS saves AMU issue

registers so that partially-initiated AMOs can be properly restarted
later. The internal states within the AMU are not part of the archi-
tectural context. A thread’s AMOs continue to execute while it is
context switched off the processor, and the associated AMO return
register continues to be a legal and safe target for the AMU to store a
return value.

Our current design limits the number of AMOs with return values
that a given thread, or set of threads on a single node, can have in flight
at any given time to the number of physical AMO registers present on
each memory controller. A more scalable design would entail virtu-
alizing the AMO registers so that multiple client threads could share
physical AMO registers. To support virtualization, each memory con-
troller would need to be able to map reads and writes to virtual AMO
registers, identified by (ProcessID, RegNum) pairs, to either physical
AMO registers or private DRAM managed by the AMU to back the
physical registers. We do not support this functionality in our cur-
rent design, because a modest number of AMO registers suffices for
all of the applications that we consider, but it might be warranted in
commercial implementations.

Avrithmetic exceptions (e.g., divide by zero) can occur during an
AMO. Arithmetic exceptions cause the AMO to terminate and an er-
ror value to be returned to the associated AMO return register along
with enough state to identify the source of the error. A page fault can
occur when a hardware pagetable walker handles an AMU TLB miss
in the node where the AMO is initiated. This can happen, e.g., when
a page is swapped out by the OS while an AMO is in the middle of an
AMU execution, and a TLB consistency message is broadcast to the
system [34]. The memory controller issues an interrupt that causes
the OS to be invoked to handle the fault and the terminated AMO to
restart.

3.3 Hardware Organization

Figure 2 (a) presents a block diagram showing the major compo-
nents of interest in a single node with our AMU-enhanced memory
controller (MC). A crossbar connects processors to the network back-
plane, from which they can access remote memory, local memory,
and 10. The processor(s), crosshar, and memory controller are on the
same die, separate from the DRAM chips. AMO functionality is not
on the critical path of normal memory references. Each MC is ex-
tended to include a modest number of AMU issue and return value
registers. Most of the microarchitectural design we discuss here is
transparent to software.

When a processor initiates an AMO, the local AMU translates the
target virtual address to a global physical address and sends an AMO
message to the AMU on the corresponding home node. Address trans-
lation is performed via an external TLB located on the memory con-
troller. For stream-stream AMOs, the local AMU selects one of the
target addresses and forwards the AMO request to the corresponding
AMU. For grouped AMOs, the local AMU selects one node from any
of the non-temporary target stream addresses and forwards the request
to this node. In our current design, when there is more than one pos-
sible destination node, the source AMU selects the one that results
in the fewest inter-node stream transfers. When an AMO message
arrives at its destination, it is placed in an AMU command queue to
await dispatch. If the queue is full, the target AMU sends a NACK to
the requesting node, which must reissue the request.

The scalar unit handles scalar AMOs. It incorporates a tiny coa-
lescer cache used exclusively for synchronization variables. The co-
alescer eliminates DRAM accesses when the same word of data is
the target for frequent AMO operations, which is common for heavily
contested synchronization variables. In our study, four single-word
entries can cache all hot scalar data.

Figure 2 (b) is an enlargement of the stream unit in Figure 2 (a).
When the control unit (CU) sees the GROUP_END bit, it allocates

:] ALU] FPU [
!
|
| |
af------------=- - ---------—---=< R
; interconnect
T Ty -
7777777777777777 : 1 :
V v
N | |
AMOs biﬂ E biﬁ E
b stream |V || g
“tetval - bl g buffers | ||
,,,,,,, i SO I
dir <7 F dir < F
’ DRAM interface ‘
(a) An AMU-augmented MC (b) The Stream Unit
Figure 2. The Active Memory Unit
i Parameter Value
stream _buffers (SBs) to hold the operand and result_ streams associ — T T8 ey active TS 2GFz
ated with each AMO. The stream addresses used in the group are Node 7 processors w shared hub and DRAM
compared to identify producer-consumer relationships and common- L1 I-cache 2-way, 32KB, 64B lines, 1-cyclelat.
source sharing. The CU uses a small reverse mapping table similar L1D-cache 2way, 32KB, 32B lines, 2-cycleat.
to a conventional register mapping table to store these stream-to-SB L2 cache 4-way, 2MB, 1288 lines 10-cyclelat.
. System bus 16B system to CPU, 8B CPU to system
mappings. i max 16 outstanding references, 1GHz
The SBs are key to stream AMO performance. They hide DRAM DRAM 7 16B-daia DDR channds
latency and provide intermediate storage between components of grouped Hub clock 500 MHz
AMOs. Each SB is a 1-word x 32-entry dual-ported SRAM managed Memory latency | >120 processor cycles
Network latency | 100 processor cycles per hop

as acircular queue. Associated with each SB is a simple Address Gen-
eration Unit (AGU). AGUs generate a stream of memory requests to
load stream values into the appropriate SB entries. The addresses
generated correspond to the head of the stream followed by a series of
addresses, a stride apart, until either the end of the stream is reached
or the SB is filled. In the latter case, the AGU pauses until an entry
is freed and then issues a new request. For non-unit stride streams,
we exploit short DRAM burst lengths. Reads from a given SB are
consumed in-order by the ALUs, but writes into the SB can occur in
random order since main memory and remote caches can respond out
of order, which is why we use an SRAM instead of a FIFO for SBs.

Associated with each SB entry is a F/E bit, which denotes whether
a particular operand has been returned from main memory or a remote
cache. When the F/E bits of the head of each operand SB for an
AMO indicate that the first operands are ready, they are fetched to the
function unit (FU) that has been allocated to this AMO by the CU.
Results from each FU are directed to the proper result SB by the CU.
Read and write pointers associated with each SB are used to determine
which word to read (write) as data is consumed (produced) by AMOs.

To ensure global coherence, the AMU issues DRAM requests via
the local directory controller, which checks to see if the copy of the
data in local memory can be used directly. If not, the directory con-
troller performs the necessary operations to make the data coherent
(e.g., issuing invalidate or flushback requests to remote sharers).

Our current AMU design includes a 1024-entry TLB, five inte-
ger ALUs, four single-precision FPUs, sixteen 32 x 32 bit stream
buffers, sixteen AMO issue and result registers, control logic, and
wires. To determine the amount of silicon required to implement the
proposed AMO mechanisms, we use a commercial memory generator
by Artisan™to model the SRAM structures and implement the rest in
Verilog, which we synthesized using Synopsis™tools. We conserva-
tively estimate the area of an AMU to be no more than 2.6 mm? in
a 90nm process, which is less than 1.9% of the total die area of a

Table 2. System configuration.

high-volume microprocessor or 0.8% of a high-performance micro-
processor [14]. If AMOs were integrated with the processor core so
that AMO addresses could be translated by the processor TLB, the
chip area would shrink to 1.5 mm?. These estimates are conservative,
since they are derived using high-level design and synthesis tools. A
custom implementation would likely be less than half of the estimated
size.

4. EXPERIMENTAL SETUP

Simulation framework
We use execution-driven simulation to evaluate AMOs. Our sim-
ulator [38] accurately simulates large-scale ccNUMA systems, in-
cluding detailed processor, cache, bus, interconnect, memory con-
troller, 10, and DRAM models. The system model is a hypotheti-
cal next-generation SGI supercomputer and models the complete SGI
directory-based coherence protocol [30]. Each simulated node mod-
els two superscalar processors connected to a high bandwidth bus.
Also connected to the bus is a hub [31] that integrates the processor
interface, memory controller, directory controller, coherence engine,
network interface, and 10 interface. Each node contains a DRAM
backend with 16GB of physical memory. We simulate a micro-kernel
that has realistic memory management routines, supports most com-
mon Unix system calls and directly execute statically linked 64-bit
MIPS-IV executables. The simulator supports the OpenMP runtime
environment.

Table 2 lists the major parameters of the simulated system. The
L1 cache is virtually indexed and physically tagged. The L2 cache is
physically indexed and physically tagged. The DRAM backend has

Benchmark Description

From

barrier barrier synchronization SGlI Irix OpenMP library

spinlock ticket lock and array-based queue lock Mellor-Crummey and Scott [22], Anderson [4]
GUPS random global updates HPCS Program

STREAM memcpy, scale, sum, triad J. McCalpin

SAXPY Y +=a* X, single precision FP BLASIevel 1

Info_Retrieval query

unindexed relational database query

OSDB by Compag-HP

Total _Report query

unindexed relational database query

OSDB by Compag-HP

Query 2A for document search Set Query Benchmark
Query 3A for direct marketing and decision support | Set Query Benchmark
Query 4 for direct marketing and document search | Set Query Benchmark

Table 3. Benchmarks

4 20-byte channels connected to DDR DRAMs, which enables us to
read an 80-byte burst per channel every two cycles. Of each 80-byte
burst, 64 bytes are data and the remaining 16 bytes are a mix of ECC
bits and partial directory state. The simulated interconnect subsys-
tem is based on SGI’s NUMALink-4. The interconnect is a fat-tree,
where each non-leaf router has eight children. The minimum network
packet is 32 bytes. We do not model contention within routers, but
do model port contention on the hub interfaces. We have validated
the core of the simulator by configuring its parameters to match those
of an SGI Origin 3000, running a large mix of benchmark programs
on both a real Origin 3000 and the simulator. All simulator-generated
statistics (e.g., run time, cache hit rates, etc.) are within 15% of the
corresponding numbers generated by the real machine, most within
5%.

We extended the simulator to support active messages and processor-
side atomic instructions like those in the Itanium2 [13]. Most over-
heads of active messages are accurately modeled, e.g., interrupt han-
dling, instruction pipeline flush, and cache pollution effects, but some
are not, e.g., OS overhead on the issuing processor, so our results for
active messages are somewhat optimistic.

Benchmarks

Table 3 lists the ten benchmarks we use to evaluate AMOs. The first
three only use scalar AMOs while the rest of the benchmarks mainly
use stream AMOs. All are compiled using the MIPSpro Compiler
7.3 with an optimization level of “- O3”. Native compiler support for
AMOs is not currently available, so we manually inserted AMOs us-
ing simple macros. All results presented in the next section represent
complete simulations of the benchmark programs, including kernel
and application time, and the direct and indirect overheads resulting
from the use of AMOs and active messages. Throughout the paper,
we define the speedup of codes over codeg as Execution_timep /
FExecution_timea.

The barrier benchmark uses the barrier synchronization function
of the Irix OpenMP library. To evaluate spinlock algorithms, we con-
sider two representative implementations, ticket locks [22] and An-
derson’s array-based queue locks [4]. For both barrier and spinlock,
we insert small, random delays similar to what Rajwar et al. [27] did.
The GUPS benchmark [17] performs random updates to a large array
to determine the number of global updates per second (GUPS) that
a system can sustain. It represents the key access pattern in molecu-
lar dynamics, combustion, and crash simulation codes. The STREAM
benchmarks [21] are often used to measure the effective bandwidth of
parallel computers. SAXPY is from the Basic Linear Algebra Subpro-
grams (BLAS) suite. It is representative of the many BLAS library
functions that map effectively to AMOs.

Historically, database applications were disk 1/0 bound. However,
memory density has increased and disk optimizations have reduced
the impact of 1/0 on database performance, so memory performance
has emerged as the new bottleneck for many large databases [3, 5,
6]. We investigate the potential of AMOs to accelerate queries from
Set Query Benchmark [10] and the Open Source Database Bench-
mark (OSDB) [12] suites. DB benchmarks like TPC-H are more
complete, but are hard to install and evaluate in realistic simulation

Nodes Speedup over baseline
Atomic | ActMsg | MAO | AMO
2 1.03 0.73 1.29 193
4 113 157 4.55 8.68
8 117 1.40 553 | 12.06
16 1.06 1.28 450 | 14.16
32 119 1.62 546 | 27.34
64 121 174 751 | 3743
128 118 1.83 | 11.70 | 54.82

Table 4. Barrier performance (2 cpus per node)

time [1, 15]. While the database benchmarks we use are simpler than
benchmarks such as TPC-H, researchers from both the database and
computer architecture communities have found that greatly simplified
microbenchmarks capture the processor and memory system behavior
of TPC workloads quite well [15, 32]. The database benchmarks that
we consider are more complex than the queries used in those studies.

5. SIMULATION RESULTS

For each of our ten benchmarks, we compare their performance
when implemented using conventional shared memory instructions
(e.g., loads, stores, and LL/SCs), active messages (ActMsg), processor-
side atomic instructions like those in Intel Itanium (Atomic), memory-
side atomic operations like those in the SGI Origin 2000 (MAOs), and
AMOs, where applicable. All results are scaled with the conventional
shared memory version serving as the baseline.

5.1 Barrier

The SGI OpenMP barrier implementation uses LL/SC instructions.
We created Atomic, ActMsg, MAO, and AMO-based variants. Ta-
ble 4 shows the results of running these various barrier implemen-
tations on 4 to 256 processors (2 to 128 nodes). Active messages,
MAQOs, and AMOs all achieve noticeable performance gains, but AMO-
based barriers achieve by far the best performance for all processor
counts, ranging from a 1.9X speedup on two nodes to 54.8X on 128
nodes. The reason for these results follows.

In the baseline LL/SC-based barrier implementation, each proces-
sor loads a barrier count into its local cache using an LL instruction
before incrementing it using an SC instruction. If more than one pro-
cessor attempts to update the count concurrently, only one will suc-
ceed, while the others will need to retry. As the system grows, the
average latency to move the barrier variable from one processor to an-
other increases, as does the amount of contention. As a result, barrier
synchronization time increases superlinearly as the number of nodes
increases for the LL/SC-based implementation.

Using atomic instructions eliminates the failed LL/SC attempts,
but each increment causes a flurry of invalidation messages and data
reloads, so the benefit of using Atomic is marginal.

The ActMsg barrier implementation sends an active message to the
home node for every increment operation. The overhead of invoking
the message handler dwarfs the time required to run the handler itself,
but the benefit of eliminating remote memory accesses outweighs the
high invocation overhead.

MAO-based barriers send a command to the home memory con-
troller for every increment operation. Instead of naively using un-
cached loads to spin on the barrier variable, we spin on a local cacheable
variable, an optimization similar to Nikolopoulos at al. [23]. How-
ever, as in the Atomic implementation, each increment causes a flurry
of invalidation messages and data reloads.

The AMO version achieves much higher performance by elimi-
nating the large numbers of serialized coherence operations present
in the other barrier implementations. When each processor arrives at
the barrier, it performs an AMO i nc operation and then spins on the
corresponding AMO result register. To optimize barrier performance,
we can specify that no result should be returned until barrier count
matches some trigger value, e.g., the number of threads expected to
arrive at the barrier. When the barrier count reaches the trigger value,
the AMU sends an update to every sharer of this cacheline as indicated
by the sharing vector. * Upon seeing the AMO completion, each spin-
ning thread will proceed beyond the barrier. For the configurations
that we test, AMO-based barriers outperform even the expensive pure
hardware barriers present in several of current high-end interconnects
(e.g., the Quadrics QsNet™ used by the ASCI Q supercomputer [25]).

Barriers take great advantage of the small coalescer cache present
in each AMU. All subsequent AMOs after the firsti nc operation will
find the data in the coalescer and thus require only two cycles to pro-
cess. Thus, for reasonable system configurations, the per-processor
latency of AMO-based barriers is almost constant, since the typical
roundtrip message latency dwarfs the time to process N increment
operations at the home AMU. We do not assume that the network can
physically multicast updates; performance would be even higher if the
network supported physical multicast.

5.2 Spinlocks

Ticket locks [22] employ a simple algorithm that grants locks in
FIFO order. Anderson’s array-based queue locks [4] use an array
of spinlocks to alleviate the interference between readers and writ-
ers, which is severe under contention. We pad the array to eliminate
false sharing. Both algorithms still suffer from serialized invalidate-
permission-write delays when implemented using conventional shared
memory.

Table 5 presents the speedups of different ticket and array-based
queuing locks compared to LL/SC-based ticket locks. For traditional
mechanisms, ticket locks outperform array locks on fewer than 32
processors (on 16 nodes), while array locks outperform ticket locks
for larger systems. This result confirms the effectiveness of array
locks at alleviating hot spots in large systems.

Our results show that using AMOs dramatically improves the per-
formance of both types of locks and negates the difference between
ticket and array locks. In contrast, the other optimized lock imple-
mentations do not have clear advantage over their LL/SC-based coun-
terparts on large systems. For more detailed discussions on applying
AMOs to synchronization operations, please refer to Zhang et al. [39].

5.3 GUPS

Figure 3(a) contains the core loop of the GUPS microbenchmark,
which atomically increments random fields of a large histogram ar-
ray. We use a 256-megabyte histogram array, which is tiny compared
to the real workloads that GUPS models [17], so our results are con-
servative for AMOs, whose performance is independent of array size.
GUPS exposes the memory system bottlenecks of current computer
architectures. Specifically, TLB and cache hit rates are extremely low.
In real-world applications, most histogram accesses miss in the TLB.
As the number of active processors increases and the histogram array
is spread across more processors, the number of remote cache misses

1AMOs keep sequential consistency except for the barrier, which is
release consistent because of the delayed update mechanism. Since
this operation is used exclusively for barriers, this semantic is com-
pletely acceptable.

increases. With four processors, remote memory stalls account for
66% of execution time, which increases to 88% for 128 processors,
even when we employ aggressive superpaging to eliminate all TLB
misses.

Note that using the incoherent scatter-gather memory operations
that are available on many vector machines can lead to race condi-
tions and program errors, because multiple threads may attempt to in-
crement the same histogram field at the same time. Even with coher-
ent memory, either atomic adds or complex software techniques like
segmented scan are required to ensure correctness. Our baseline im-
plementation employs non-atomic adds, without locking, so the base-
line performance results are optimistic. In contrast, our ActMsg and
AMO implementations use atomic adds. To filter out the interference
effect of active messages, we reserve one processor per node to han-
dle active messages, so ActMsg results are optimistic. In the baseline
and AMO-based implementations, the second processor on each node
sits idle. MAOs are not considered because they work in uncacheable
memory space, and simply disabling caching for GUPs will hurt per-
formance.

In Figure 3(b), we report speedups of ActMsg and AMOs over
baseline on different system configurations. ActMsg is very effective
for GUPs. The performance of the AMO version is about twice of the
ActMsg version with and without superpages. The main reason that
both mechanisms are so effective is that they eliminate substantial net-
work traffic induced by remote misses. Figure 3(c) shows the number
of network packets (in thousands) sent for some test cases with su-
perpaging. On average, active messages reduce network traffic by a
factor of 4.3, while AMOs reduce network traffic by 5.5X.

5.4 STREAM and SAXPY

The performance of stream operations is dependent on how data
is distributed across nodes. Since there is no accepted “typical” data
distribution, we distribute data such that 50% of the operand data in
multi-stream operations must be loaded from a remote node. For ex-
ample, half of the data traffic for memcopy is within the local node
and half is copied between different nodes. For scale, half of the pro-
cesses use local memory and the other half fetch data from a remote
node.

Table 6 shows the performance of AMOs on these benchmarks for
different system sizes using the default setup of Table 2. h100 and
h200 denote systems with a network hop delay of 100 and 200 proce-
sor cycles, respectively. In all cases, AMOs perform very well, with
performance as much as 38X faster than the baseline implementation.
In addition, we can see that as remote memory latencies increase, the
benefits of AMOs increase.

Except for triad, the MIPSpro compiler is able to perform aggres-
sive loop unrolling and inserts near-optimal prefetch instructions. As
a result, the baseline versions of these benchmarks suffer very few
cache misses. However, since the processor can process data faster
than the system bus can transfer it, the system bus becomes a perfor-
mance bottleneck. In contrast, AMOs execute below the system bus,
so bus bandwidth is not a bottleneck. AMOs exploit the high band-
width within the memory controller and saturate the DRAM backend.
5.5 Database Queries

In this section we present the performance derived by applying
AMOs to database queries from the OSDB and Set Query benchmark
suites. Info_Retrieval and Total_Report are representative queries from
the OSDB benchmarks suite. Info_Retrieval uses six fields from each
database record, while Total_Report uses three. Info_Retrieval per-
forms one aggregate operation (count) while Total_Report performs
seven (m n, max, and count on different attributes). The Set Query
benchmarks perform a number of condition tests on each data record.
They are representative of a variety of document search, marketing,
and decision support workloads.

Figures 4 and 5 present the speedups of the ActMsg- and AMO-
optimized database engines compared to conventional implementa-

Nodes, CPUs LL/SC Atomic ActMsg MAO AMO
ticket | array | ticket | array | ticket | array | ticket | array | ticket | array
2,4 100 | 041 | 091 | 052 112 | 050 | 101 | 041 2.09 124
4,8 100 | 046 | 0.86 | 054 170 | 0.46 105 | 050 2.35 174
8,16 100 | 050 [097 | 056 | 227 | 053 110 | 050 2.32 2.27
16, 32 100 | 055 [099 | 063 | 237 | 053 107 | 051 2.38 1.95
32,64 100 | 166 | 087 169 | 067 147 | 067 151 6.39 5.01
64,128 1.00 | 2.80 114 | 268 | 089 | 244 | 079 | 252 | 1100 | 10.99
128, 256 1.00 | 355 124 | 344 100 | 301 | 085 | 299 | 1358 | 1135

Table 5. Speedup of various spinlocks compared to LL/SC-based spinlocks.

0 no sp, ActMsg
= no sp, AMO

for (i =0; i < accesses; i++)
o 2 w/ sp, ActMsg
AL Pdx[i]] 4= v; 2 10-] ™ W/ sp, AMO
4
Array idx containsduplicate values. 0 g
E.g., idx[1] and idx[3] may
both give the same index into A. 0
2 nodes 4 nodes
(a) code

Nodes | baseline | ActMsg| AMO
2 | 138 | 302 | 22
8 | 2519 577 459
8 nodes 16 nodes 32 nodes 64 nodes 32 2931 688 516

(b) speedup (w/ and w/o superpaging)

(c) traffic (with sp)

Figure 3. GUPS code and performance (using a dedicated ActMsg handler processor).

tions. The baseline queries have been highly optimized, including
evaluating high-selectivity and low-cost predicates first, and manually
inserting aggressive data prefetches. For example, in both single-node
and multi-node settings, the L1 cache hit ratio for Info_Retrieval and
Total_Report are 99.5% and 98.3%, respectively. For multi-node ex-
periments, we employ the “50% remote” distribution and hop latency
variations described in Section 5.4.

As can be seen in the figures, AMOs speed up the various database
queries by factors ranging from 2.1X to 4.4X compared to their re-
spective baselines. The ActMsg variants perform poorly at small node
counts, but achieve 50-75% of the benefits of AMOs for larger con-
figurations.

5.6 Sources of AMO Performance Gain

The benchmarks described in Sections 5.1 through 5.5 benefit from
different aspects of our AMO design. Since space is limited and the
database queries are much more complex than the other benchmarks,
our sensitivity analysis is limited to the database query benchmarks.

In this subsection, we quantify the extent to which each of the po-
tential sources of AMO performance improvement affect the database
query results. The four potential benefits of AMOs that we consider
and isolate are:

e localizing computation by performing the work at the data’s
home node

e utilizing specialized hardware for specific operations such as
max orm n

e accessing sparse data using short DRAM bursts as opposed to
full cache line bursts

e exploiting stream-level parallelism in grouped AMOs

To better understand how AMOs are able to improve database en-
gine efficiency, we perform a number of experiments that isolate the
impact of the various features of AMOs. The first factor, localizing
computation to avoid remote memory accesses, benefits both AMOs
and ActMsgs; the other three are unique to AMOSs, and explain the
performance difference between ActMsgs and AMOs. The four fac-
tors are not orthogonal; each one is only profitable if it alleviates a
system bottleneck for a particular application. Alleviate a bottleneck
beyond the point where other system components have become the
primary performance bottleneck and we will see diminishing returns.
For space limitations, we only included experiments that highlight the
influence of the variable that is under investigation. Figure 6 presents

the results of our sensitivity analysis. The metric is AMO speedup
over baseline. The black bars are the ones already shown in Figures 4
and 5 using the default configuration.

Computation L ocalization

By shipping the computation to data’s home node, remote loads are
converted to local loads. Thus, network bandwidth and latency lim-
itations are avoided for both active messages (ActMsg) and AMOs,
while half of the data in the baseline version is fetched from across
the network. Since only a single active message is sent per page in
the ActMsg variant of each benchmark, message handler invocation
overhead is negligible. Thus, the speedup achieved by using active
messages shown in Figures 4 and 5 represents the benefit of compu-
tation localization. As can be seen in the figures, the contribution of
computation localization to AMO performance is modest for small
configurations, but substantial for larger ones.

Specialized Hardware

AMUs have specialized hardware designed for efficient stream pro-
cessing, e.g., an AMU can compute the max of two integers in a single
cycle after the operands are available, whereas doing so on a conven-
tional CPU requires several load, store, comparison, and branch in-
structions. Of the database queries discussed here, Total_Report ben-
efits the most from specialized function units.

Figure 6(a) shows how Total_Report performance changes with
varying latencies for max, m n, and count . For example, if it takes
the AMU 4 memory controller cycles (20 processor core cycles) to
perform a max/ m n/ count operation, the AMO code can achieve
a speedup of 2.9 on single node, down from 3.7X with faster ALUs.
This result motivates the addition of common simple stream opera-
tions (e.g., m n, max, and popcount) when the area overhead is
small and the performance impact is significant.

Fine-grained DRAM Accesses

Rather than loading entire cache lines (e.g., 128 bytes) from DRAM,

the AMU loads as few bytes as the DRAM backend allows. For

stream operations, the AMU only loads the referenced fields and not
the entire cache line. For masked stream operations, the AMU only

loads stream elements that correspond to a ‘1’ bit in the mask stream.

In the Info_Retrieval query, the first predicate evaluation results in
a bit mask that eliminates 90% of the tuples, so subsequent AMOs

need only operate on 10% of the tuples. In Q4 of Set Query (Fig-

ure 5(c)), the first predicate evaluation filters out 80% of the tuples.
Thus, AMUs have ample opportunity to exploit short DRAM bursts

for stream operations.

In our design, AMUSs load data from DRAM in 32B bursts, whereas

memcopy scale sum triad saxpy
nodes, procs | h100 | h200 | h100 | h200 h100 h200 h100 h200 h100 | h200
11 1.33 1.33 1.08 1.08 2.01 2.01 4.27 4.27 1.58 1.58
1,2 117 | 117 | 112 | 112 2.05 2.05 4.54 454 | 1.09 | 1.09
4,8 119 | 122 | 129 | 1.73 4.17 4.44 7.97 | 1209 | 1.24 | 1.45
32,64 1.31 1.68 2.11 2.99 9.34 | 12.23 | 17.74 | 25.72 2.04 3.36
128,256 1.49 2.13 2.58 3.74 | 11.94 | 19.13 | 21.50 | 38.37 2.47 4.82

Table 6. Speedup of AMOs on STREAM and SAXPY

,E O ActMsg
D 4- ®AMOs
]
I
ko)
3
o
>
o
a 27
=]
?
o '
o
o 0 -
1node 2nodes 8nodes 32 nodes 2nodes 8nodes 32 nodes

network hop = 100 cycles network hop = 200 cycles

(@) Info_Retrieval

2 -

nn

2nodes 8nodes 32 nodes 2nodes 8nodes 32 nodes
network hop = 100 cycles network hop = 200 cycles

° Tnode

(b) Total_Report

Figure 4. Optimizing the OSDB Benchmark

the baseline system loads 128B cache lines. DRAM vendors (e.g.,
Rambus) have started to enable even shorter DRAM burst lengths.
Figure 6(b) shows the performance of four queries as we vary DRAM
burst lengths. These experiments confirm that loading data at smaller
granularity (32B) for strided accesses greatly improves memory per-
formance. In particular, using AMOs for the two Set Query bench-
marks on single node systems hurts performance (speedup < 1) if
load elements via 128-byte DRAM bursts. Decreasing the minimum
DRAM burst length from 32 bytes to 4 bytes provides a marginal ben-
efit for our experiments, because with 32-byte bursts memory band-
width is not a bottleneck when there are two processors and four
DRAM channels per node.

Greater Parallelism

In the baseline implementations, stream operations are performed se-
rially. Each query predicate is evaluated on the entire database ta-
ble in its entirety before the next predicate is evaluated. Although
there is substantial instruction-level parallelism, performance is lim-
ited by processor reorder buffer size, the number of physical registers,
the number of MSHRs, and other factors. In contrast, AMOSs exploit
stream-level parallelism. Each AMO in a group of AMOs can proceed
in parallel using different stream buffers, thereby fully exploiting the
available DRAM bandwidth. Further, the use of temporary streams
allows results from one stream operation to be bypassed directly to
the the FU where they will be consumed, which minimizes SB ac-
cesses. OSDB Tot al _Report and Set Query 4 both exploit this
form of stream parallelism. The gray bars in Figure 6(c) show the
performance of these queries when we ran them using serial (non-
grouped) AMOs. Doing so reduced performance by 10-20%.

6. CONCLUSIONSAND FUTURE WORK

In this paper, we propose a mechanism Active Memory Operations
(AMOs), which allow programmers to ship select computation to the
home memory controller of data. Doing so can eliminate a significant
number of remote memory accesses, reduce network traffic, and hide
the access latency for data with insufficient reuse to warrant mov-
ing it across the network and/or system bus. AMOs offer an efficient
solution for an important set of computation patterns. Through sim-
ulation, we show that AMOs can lead to dramatic performance im-
provements for data-intensive operations, e.g., up to 50X faster barri-
ers, 12X faster spinlocks, 8.5X-15X faster stream operations, and 3X
faster database queries.

These results motivate us to continue this line of research. One
limitation of the current AMO design is that it supports only a small
set of operations. Another direction of future work is using one or
more imple in-order processor cores to implement the AMU. Such a
design would significantly complicate the programming model, but
provide richer opportunities for a variety of applications.

7. References

[1] TPC-D, Past, Present and Future: An Interview between Berni
Schiefer, Chair of the TPC-D Subcommittee and Kim Shanley,
TPC Chief Operating Officer. available from nttp: //ww. tpc. or g/ .

[2] J. H. Ahn, M. Erez, and W. J. Dally. Scatter-add in data parallel
architectures. In HPCA-11, pp. 132-142, Febh. 2005.

[3] A. Ailamaki, D. DeWitt, M. Hill, and D. Wood. DBMSs on a
modern processor: Where does time go? In VLDB-25, pp.
266-277, Sept. 1999.

[4] T. Anderson. The performance of spin lock alternatives for
shared-memory multiprocessors. IEEE TPDS, 1(1):6-16, Jan.
1990.

[5] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory
system characterization of commercial workloads. In Proc. of
the 25th ISCA, pp. 3-14, 1998.

[6] P. A. Boncz, S. Manegold, and M. L. Kersten. Database
architecture optimized for the new bottleneck: Memory access.
In VLDB-25, pp. 54-65, 1999.

[7] D. Patterson et.al. A case for Intelligent RAM: IRAM. IEEE
Micro, 17(2):34-44, Apr. 1997.

[8] Z. Fang. Active memory operations, Ph.D thesis, University of
Utah. 2006

[9] A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe,

L. Rudolph, and M. Snir. The NYU multicomputer - designing
a MIMD shared-memory parallel machine. IEEE TOPLAS,
5(2):164-189, Apr. 1983.

[10] J. Gray, editor. The Benchmark Handbook for Database and
Transaction Systems, Chapter 6. 1993.

[11] M. Hall, et al. Mapping irregular appilcations to DIVA, a
PIM-based data-intensive architecture. In SC’99, Nov. 1999.

[12] Hewlett-Packard Inc. The open source database benchmark.

[13] Intel Corp. Intel Itanium 2 processor reference manual.

[14] International Technology Roadmap for Semiconductors.

[15] K. Keeton and D. Patterson. Towards a Simplified Database
Workloads for Computer Architecture Evaluation. 2000.

[16] D. Kim, M. Chaudhuri, M. Heinrich, and E. Speight.
Acrchitectural support for uniprocessor and multiprocessor
active memory systems. IEEE Trans. on Computers,
53(3):288-307, Mar. 2004.

|
]

(b) Query 3B

2nodes 32 nodes
network hop = 200 cyc

2nodes 32 nodes
network hop = 100 cyc

o0
2nodes 32 nodes 1node
network hop = 200 cyc

(c) Query 4

Figure 5. Optimizing the Set Query Benchmark

@ O Actisg
o m AMOs
0
RN 2
.
[}
>
o
ERE 1]
T
[0}
[}
il
0 0-l
1node 2nodes 32 nodes 2nodes 32 nodes 1 node 2nodes 32 nodes
network hop=100cyc network hop =200 cyc network hop = 100 cyc
(a) Query 2A
4 —
6 —
3 —
: 7
o 7 o
3 =1
: 7 e
2 / &
0w 5, /
/)]
0
4 2 1 cycles o —

Total_Report on 1 node

(a) ALU latency
bytes)

network hop = 100 cyc

1 32 1 32 1 3
Info_Retrieval Total_Report Query 2A

(b) DRAM access granularity (128/32/4

network hop = 100 cyc

Speedup

2 1 32 nodes 32 nodes

Query 4

1 32 1
Total_Report Query 4

(c) AMO grouping (on/off)

Figure 6. Quantifying the performance contribution of various aspects of AMOs

[17] D. Koester and J. Kepner. HPCS Assessment Framework and
Benchmarks. MITRE and MIT Lincoln Laboratory, Mar. 2003.

[18] P. Kogge. The EXECUBE approach to massively parallel
processing. In International Conference on Parallel Processing,
Aug. 1994.

[19] J. Kuskin, et al. The Stanford FLASH multiprocessor. In Proc.
of the 21st ISCA, pp. 302-313, May 1994.

[20] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA highly
scalable server. In ISCA97, pp. 241-251, June 1997.

[21] J. McCalpin. The stream benchmark, 1999.

[22] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
scalable synchronization on shared-memory multiprocessors.
ACM TOCS, 9(1):21-65, 1991.

[23] D. S. Nikolopoulos and T. A. Papatheodorou. The architecture
and operating system implications on the performance of
synchronization on ccNUMA multiprocessors. 1JPP,
29(3):249-282, June 2001.

[24] M. Oskin, F. Chong, and T. Sherwood. Active pages: A model
of computation for intelligent memory. In ISCA-25, pp.
192-203, 1998.

[25] F. Petrini, et al. Scalable collective communication on the ASCI
Q machine. In Hot Interconnects 11, Aug. 2003.

[26] T. Pinkston, A. Agarwal, W. Dally, J. Duato, B. Horst, and T. B.
Smith. What will have the greatest impact in 2010: The
processor, the memory, or the interconnect? HPCAS8 Panel
Session, 2002.

[27] R. Rajwar, A. Kagi, and J. R. Goodman. Improving the
throughput of synchronization by insertion of delays. In Proc.
of the Sixth HPCA, pp. 168-179, Jan. 2000.

[28] S. Reinhardt, J. Larus, and D. Wood. Tempest and Typhoon:
User-level shared memory. In Proc. of the 21st ISCA, pp.
325-336, Apr. 1994.

[29] S. Scott. Synchronization and communication in the T3E
multiprocessor. In Proc. of the 7th ASPLOS, Oct. 1996.

[30] SGI. SN2-MIPS Communication Protocol Specification, 2001.

[31] SGI. Orbit Functional Specification, Vol.1, 2002.

[32] M. Shao, A. Ailamaki, and B. Falsafi. DBmbench: Fast and
accurate database workload representation on modern
microarchitecture. TR CMU-CS-03-161, Carnegie Mellon
University, 2003.

[33] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level memory
thread for correlation prefetching. In Proc. of the 29th ISCA,
May 2002.

[34] P.J. Teller, R. Kenner, and M. Snir. TLB consistency on
highly-parallel shared-memory multiprocessors. In 21st Annual
Hawaii International Conference on System Sciences, pp.
184-193, 1988.

[35] V. Tipparaju, J. Nieplocha, and D. Panda. Fast collective
operations using shared and remote memory access protocols
on clusters. In Proc. of IPDPS, page 84a, Apr. 2003.

[36] J. Torrellas, A.-T. Nguyen, and L. Yang. Toward a cost-effective
DSM organization that exploits processor-memory integration.
In Proc. of the 7th HPCA, pp. 15-25, Jan. 2000.

[37] T.von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active
Messages: A mechanism for integrated communication and
computation. In Proc. of the 19th ISCA, pp. 256-266, May
1992.

[38] L. Zhang. UVSIM reference manual. TR UUCS-03-011,
University of Utah, May 2003.

[39] L. Zhang, Z. Fang, and J. B. Carter. Highly efficient
synchronization based on active memory operations. In IPDPS,
Apr. 2004.

[40] L. Zhang, Z. Fang, M. Parker, B. Mathew, L. Schaelicke,

J. Carter, W. Hsieh, and S. McKee. The Impulse memory
controller. IEEE Trans. on Computers, 50(11):1117-1132, Nov.
2001.

