
ENERGY EFFICIENT CLUSTER CO-PROCESSORS

Ali Ibrahim, Mike Parker, Al Davis

School of Computing, University of Utah
{ibrahim | map | ald}@cs.utah.edu

ABSTRACT

New 3G wireless algorithms require more performance than
can be currently provided by embedded processors. ASICs provide
the necessary performance but are costly to design and sacrifice
generality. This paper introduces a clustered VLIW coprocessor
approach that organizes the execution and storage resources dif-
ferently than a traditional general-purpose processor or DSP. The
execution units of the coprocessor are clustered and embedded in
a rich set of communication resources. Fine grain control of these
resources is imposed by a wide-word horizontal micro-code pro-
gram. The advantages of this approach are quantified on a suite
of six algorithms that are taken from both traditional DSP applica-
tions and from the new 3G cellular telephony domain. The result
is surprising. The execution clusters retain much of the general-
ity of a conventional processor while simultaneously improving
performance by one to two orders of magnitude and by reducing
energy-delay by three to four orders of magnitude when compared
to a conventional embedded processor such as the Intel XScale.

1. INTRODUCTION

Despite the rapid rate of embedded and DSP processor improve-
ment, a number of important signal processing tasks such as 3G
cellular telephony [1] cannot be adequately supported in the em-
bedded space without employing ASICs. ASICs are efficient in
terms of area, power and performance but lack flexibility and suf-
fer from expensive design costs and time. ASIC accelerators for
DSP systems take advantage of several common properties of DSP
algorithms. The majority of the processing is dominated by reg-
ular inner loops which process streams of input signal data. The
high level of parallelism makes them amenable to processor spe-
cialization. Similar properties hold for other important application
domains: encryption/decryption, media encode/decode, speech or
visual feature recognition, etc.

This paper presents an alternative approach to processor spe-
cialization which retains much of the generality and programma-
bility of traditional processor solutions while achieving both per-
formance and energy consumption levels that are closer to an ASIC
approach. From a high-level perspective, the approach relies on
two simple changes to a conventional processor architecture. First
the execution resources are organized as a cluster that is embedded
into a rich set of communication resources. Second, the movement
of data through the communication infrastructure, and the control

of execution units is orchestrated by a program that provides fine-
grained control for the physical resources. This program is es-
sentially a wide-word horizontal micro-code. The combination of
these two ideas allows special purpose computational pipelines to
be dynamically established that resemble data flows found in an
ASIC implementation. The fine-grained software control provides
considerable generality since these pipelines can be instantly dy-
namically reconfigured to support a new processing phase. Algo-
rithms which map poorly onto the communication and execution
resources still run but at reduced efficiency.

This architecture therefore represents a middle ground between
general purpose embedded processors and ASICs. The approach
is evaluated by manually mapping a set of six signal processing
applications onto a CMOS implementation of the architectures.
Three of these algorithms are taken from conventional signal pro-
cessing. The first is an 8x8 matrix multiply (Matmult). The second
selects the maximum element from a 128 element vector (Vec-
max). The third application, Dotp sqr takes two vectors V1 and
V2 and produces two dot products V1 · V1 and V1 · V2.

The other 3 applications were selected from the new 3G wire-
less telephony standard. T-FIR is a 16-tap transpose FIR filter.
RAKE [2] extracts signals from multipath aliasing effects. Our im-
plementation involves four complex correlation fingers. TURBO
is a complex encoding application that exhibits superior error cor-
rection capabilities. This implementation contains 2 max-log-MAP
modules, an interleaver, and a de-interleaver which implements the
algorithm described in [3].

Both RAKE and TURBO pose implementation difficulties due
to their high storage demands. For TURBO we limit the frame
size to 500 and use a sliding window technique where the win-
dow is limited to 90. This allows the input frame data and tempo-
rary variables to fit within the memory resources in the coproces-
sor. For the RAKE receiver, the maximum temporal difference in
multi-path delays will determine the necessary storage for the in-
put samples. Since the total storage needed to implement RAKE in
the coprocessor exceeds local memory requirements, the spreading
code must be continually supplied in pieces by the host processor.

The performance and corresponding energy consumption for
these six algorithms are compared on 3 different implementations:
a special purpose ASIC, mapping the algorithms onto the cluster
architecture, and compiled versions of the applications running on
an Intel XScale (StrongARM) processor. It is important to note
that a common circuit design trade-off is to pursue energy effi-
ciency or high performance. Hence comparing architectures using
a single metric is misleading. Horowitz [4] argues that a more rele-

vant comparison of architectural merit should be based on the rate
of work per energy or an energy delay product. The cluster based
coprocessor approach will be shown to achieve an energy-delay
efficiency close to that of an ASIC while retaining a reasonable
level of generality.

2. ARCHITECTURE

The architecture presented here has a 16-bit wide internal datapath
to match the worst case need of the six test applications. Some of
the codes also operate on single- or 8-bit data, and in these cases
the appropriate sized field is extracted from the 16-bit native val-
ues. The high level organization of the coprocessor is shown in
Figure 1. In this organization, data is pushed into the coproces-
sor via the input SRAM by a host processor. The input SRAM is
dual ported to provide simultaneous access to the coprocessor and
the host. Similarly, results are posted to the output SRAM and are
removed by the host processor. The coprocessor can then handle
compute intensive tasks and the host processor is only responsible
for course grained copying of input and output frames.

The coprocessor core is divided into storage and execution
components. Storage consists of two dual-ported scratchpad SRAMs
to store local data, and an instruction SRAM to store the micro-
code. Four local data ports are required in order to avoid perfor-
mance losses due to memory starvation at the execution resources.
The execution part consists of four coarse-grained programmable
units (PUs) and four address generation units (AGUs). Each PU
further contains multiple execution units such as ALUs. These re-
sources and the data steering required to move data between them
is under software control. The control program is essentially hor-
izontal microcode and resembles a fine-grained VLIW architec-
ture. The main difference between this approach and a typical
VLIW processor is that the communication infrastructure between
the execution resources is richer, more flexible, and is controlled
at a more fine-grained level than is found on VLIW designs.

Each AGU is associated with a particular PU. AGUs provide
addresses to either the scratchpad, input or output SRAMs. Read-
write control, and the target SRAM for a particular AGU’s address
is provided by the microcode. An AGU contains two registers and
an adder. It can accept a data value from the associated PU or an
immediate value from the micro-code. AGUs effectively support a
variety of common address modes: immediate, indirect, displaced,
and strided. AGUs do not support scaled addressing since all of the
memories are simply organized as an array of 16-bit words.

The PUs are interconnected by 4 general intra-cluster busses
and are fully connected to each other by full-duplex point to point
links. The busses are used to feed the PU’s from the memories and
the point to point links allow execution pipelines to be effectively
set up between PUs. The interconnection scheme is illustrated in
Figure 2. Note that each of the 4 general busses are driven by the
output of a 5 to 1 mux. These muxes are used to select between

u-Code
SRAM

Input
SRAM

Host
Interface Execution Cluster

Scratch
SRAM0

Scratch
SRAM1

Output
SRAM

Coprocessor Core

Fig. 1. Coprocessor organization

PU0 PU1 PU2 PU3

Bus0
Bus1
Bus2
Bus3

5x1

in0 in4

5x1

in0 in4

5x1

in0 in4

5x1

in0 in4

OUT0

M M M M

OUT3 OUT1 OUT2

Fig. 2. Cluster interconnection

5x1
MUX

5x1
MUX

EXECUTION
UNIT(XU)

3 PUs
PORTS

3 XUs
OUTPUT-PORTS 2 BUSSES

2 REGISTER
FILE PORTS

Fig. 3. Execution Unit

the 2 input SRAM ports, one read port from each of the scratch
SRAM’s, and an immediate value from the instruction.

The 4 cluster outputs are routed to the 4 scratchpad SRAM
ports. Each of the cluster outputs is driven by a 2:1 mux, the M
boxes in Figure 2. The inputs of the 2:1 muxes come from the full
duplex point to point inter-PU links. This allows any PU to write
to either scratch SRAM. The main advantage of this multiplexing
model is that it provides flexibility in steering data from the mem-
ories to the appropriate execution unit inside each of the PUs and
similarly to steer data back to the scratch memories.

The common 5:1 mux’s reflect performance goals. In order to
evaluate the full system behavior of this architecture, we have also
designed a reference microprocessor that runs at 300 MHz in our
.25µm CMOS process. The cluster was designed to meet this tar-
get. Larger multiplexors would reduce the frequency and smaller
multiplexors would reduce the generality which in turn limits pro-
gram mapping options and adversely impacts performance.

Each PU consists of three integer execution units (XUs), il-
lustrated in Fig. 3 and an 8 entry register file with 2 read and 2
write ports. The XUs, ALU0, ALU1, and MS work as follows.

Both ALU’s have single cycle latency and support add, subtract,
and AND. ALU0 also supports byte-select and a stylized bit-word
multiply used in a stylized complex number multiplication com-
mon in 3G algorithms. ALU1 also supports compare-select and
XOR. The MS unit provides either multiply or shift. This combi-
nation reflects the fact the multiply and shift are rarely simultane-
ously needed. XU’s take 2 inputs and provide a single output.

The outputs of the 5:1 muxes are registered. Each XU receives
its inputs from these pipeline registers. When viewed individually
the sources feeding each mux is somewhat confusing. However
when viewed as a pair, the view becomes consistent. Namely each
XU can be fed by any of the 5 XU outputs (2 register file, 1 each
from the 2 ALUs, and 1 from the multiply-shift), any of the 3 point
to point inter-PU links and 2 of 4 possible busses. At first glance
the ability to get inputs from only half of the busses would appear
to be a defect. However each bus is driven by a 5:1 mux as well.
This two-level multiplexing strategy in driving input operands to
the appropriate XU removes the disadvantage. The result is a rich
and reasonably general data routing capability which when con-
trolled by the micro-code allows a wide variety of applications to
be efficiently mapped onto the architecture. As with any general
purpose device, an inefficient mapping still runs but will be ineffi-
cient in terms of performance and power consumption.

The use of two ALUs in each PU and four PUs in the coproces-
sor seems to be a good balance in terms of executional resources
to communication and storage resources. Further increase in the
number of ALUs or PUs does not generally increase performance,
but suffers the disadvantage of increasing the capacitance of the
PU inputs and increase the multiplexing delay on the PU outputs.
Furthermore, the communcation paths and limited memory ports
cannot support the bandwidth required to efficiently feed the addi-
tional compute resources.

The input, output, and scratchpad SRAMs are all 16-bits wide.
The scratch and output SRAMs each have 1024 entries, while the
input SRAM has 2048 entries. However the input SRAM is opera-
tionally organized as two 1024 word banks. In general, these banks
are used in a classical double buffer fashion, with one actively in
use by the coprocessor while the other is being written by the host.
The SRAM capacities are influenced by the frame sizes that were
chosen to test the 3G baseband algorithms. In our .25µ CMOS
process, leakage power is very small. SRAM power consumption
is therefore more dependent on the number of sense amps than
on memory capacity. The only wide memory is the micro-code
SRAM which is currently a 288-bit wide (unoptimized) 128-word
single port synchronous memory.

Operationally, large numbers of low-level physical resources
(muxes, ALUs, registers, multiple small memories, etc.) are con-
trolled by a 288-bit wide horizontal micro-code word. The micro-
code controls everything on a per clock basis: data steering, reg-
ister load enables, operation selection, address mode, and mem-
ory module selection. The flexibility of software control of fine-
grained physical resources allows a wide variety of algorithms to
be mapped onto this architecture. The specific structure of the al-
gorithm will result in more or less efficient mappings. The only
show stopper is if the algorithm requires an operation type that
isn’t supported by the cluster, e.g. floating point operations or in-
teger divide. The structure supports a rich set of options for steer-
ing data, setting up computational pipelines either between PUs,
within a PU or both. The execution resources are somewhat mod-
est by comparison, but the fact that they can be rapidly configured
into custom execution pipelines will be shown to have a significant

advantage in terms of energy and performance.

3. RESULTS

Energy and performance numbers for the coprocessor are calcu-
lated using Synopsys Nanosim, a commercial Spice level circuit
simulator, on a fully synthesized and back-annotated .25µm Verilog-
and Module Compiler-based implementation. A full clock tree and
worst case RC wire loads are included in the simulated model.
For each of the benchmarks, the microcode corresponding to the
benchmark is loaded into program memory and the circuit is sim-
ulated in Nanosim for the duration of several input packets. The
RMS current reported is used to calculate energy consumption.

In all of the algorithms, the wide instruction SRAM is ac-
cessed on every cycle, hence the instruction fetch power is con-
sistent across the benchmarks. Transpose FIR has very light data
storage requirements, as there are enough internal registers in the
cluster to store both intermediate values as well as the necessary
coefficients. The only data read or stored are the input and output
values, once every 4 cycles. Dotp sqr consumes 4 data inputs per
cycle. Hence transpose FIR and Dotp sqr represent the two oppo-
site ends of the spectrum in terms of minimal and maximal data
SRAM power requirements.

ASIC and general-purpose processor numbers are presented in
Table 1, where all of the power numbers have been normalized to
an .18µm process. These values were scaled by feature-size λ us-
ing the the method described by Gonzalez and Horowitz [4], using
a conservative1 exponent of 2. Energy and performance numbers
for the ASIC versions of .18µm turbo and RAKE are taken from
published results [5, 2]. Both these implementations differ slightly
from the cluster and XScale versions. In particular, the FlexRake
implementation employs an 8-bit datapath rather than the 16-bit
datapath used in our implementations. The turbo ASIC utilizes a
look-up table based correction that is not implemented in our work.
The implementations on the cluster and the algorithms measured
on the XScale are the same.

The transpose FIR, Vecmax, Matmult, and Dotp sqr ASIC im-
plementation were done by us using a .25µm Verilog implemen-
tation using Nanosim. The transpose FIR ASIC utilizes 16 mul-
tipliers and 15 adders that work in parallel to compute one output
per cycle in a straightforward fashion. Vecmax computed a max
of four independent streams in parallel and combines the four re-
sults at the end of a packet. Matmult operates by doing one eight
word vector by eight word vector multiply per cycle in a pipelined
fashion, using eight multipliers. Dotp sqr also uses eight multipli-
ers. Four are used to compute the dot product, and the other four
compute the square. The multiplier results are summed and finally
accumulated in a pipelined fashion.

Energy and performance numbers were taken from measure-
ments on a low-power 400MHz .18µm Intel XScale (StrongARM)
PXA250 system. This system has been augmented to permit the
measurement of the average current consumed by the processor
and memory module via a digital oscilloscope and a non-intrusive
current probe. Each of the algorithms studied has been imple-
mented in C/C++ and compiled with the GNU GCC/G++ compiler
at optimization level O3, with loops unrolled.

1By way of comparison, the FlexRake ASIC implementations de-
scribed [2] exhibit a scaling exponent of approximately 3.18. The Gon-
zalez and Horowitz paper [4] recommends a conservative value of 2 and an
aggressive value of 3.

Benchmarks ASIC Cluster StrongARM
power datarates power datarates power datarates

T-FIR 321mW 300MS/s 385mW 75.0MS/s 1370mW 3.33MS/s
Rake 1.55mW 47.0MC/s 486mW 534MC/s 1360mW 5.72MC/s

Turbo 292mW 2.00Mb/s 643mW 0.897Mb/s 1330mW 0.0163Mb/s
Vecmax 15.5mW 8.82Mvec/s 481mW 8.82Mvec/s 1330mW 0.511Mvec/s
Matmult 87.2mW 4.69Mmat/s 456mW 2.08Mmat/s 1370mW 0.160Mmat/s
Dotp sqr 119mW 9.38Mvec/s 554mW 4.62Mvec/s 1330mW 0.256Mvec/s

Table 1. Power dissipation and data rates scaled to .18µm process

Table 2 compares the energy-delay product overhead of the co-
processor and XScale implementations with respect to the baseline
ASIC implementations. In general, the coprocessor is within one
to two orders of magnitude of the energy-delay of an ASIC imple-
mentation and is three to four orders of magnitude more efficient
that a general-purpose processor implementation.

The coprocessor is capable of sustaining data rates 5-80 times
that of the general-purpose processor. When compared to the ASIC,
the coprocessor performance varies. The ASIC version of RAKE
is tuned to run at a particular correlation rate. The coprocessor
version is capable of running at 11.4 times the speed of the ASIC
version. In this case, the coprocessor architecture could be used
to process tasks between batches of packets, it could be powered-
down to save power, or the design could be voltage scaled to re-
duce power. For the transpose FIR, the ASIC is not tuned to any
particular data rate, but was synthesized for performance. The fact
that a coprocessor cluster can only sustain 1/4 of the performance
of the ASIC implementation is not surprising, in that it has 1/4 the
number of multipliers. For turbo, the coprocessor implementation
can sustain data rates at just under half that of the ASIC in a single
cluster. If higher data rates are necessary, multiple clusters can be
combined to improve the combined data rate.

4. CONCLUSIONS & RELATED WORK

ASICs have traditionally been used in the implementation of wire-
less applications that simultaneously require high performance and
power efficiency [6, 7]. Texas instruments has improved the per-
formance of their DSP processors by adding application specific
hardware support for Viterbi/Turbo decoding and chip despread-
ing [8]. Fine-grained reconfigurability can be achieved by us-
ing FPGAs and ASICs as coprocessors for DSP processors [9].
While this approach provides more options for mapping the ap-
plication onto the architecture, FPGAs have much lower perfor-
mance and consume much higher power than an ASIC approach.
The cluster approach provides more rapid reconfigurability as well
as increased performance and reduced power consumption than is
available from an FPGA approach.

Fine-grain software control of clustered execution units has
been shown to have a significant performance and energy advan-
tage over conventional processors and the performance-efficiency
of this cluster approach is close to what can be provided by spe-
cialized ASIC implementations but without sacrificing generality.
It is important to note that this work was initially motivated by

Benchmarks Cluster StrongARM
T-FIR 19.2 34600
Rake 2.43 59300

Turbo 10.9 68300
Vecmax 31.1 25600
Matmult 26.5 13400
Dotp sqr 19.1 14900

Table 2. Energy-Delay inefficiency with respect to ASIC

the need to support the processing demands of 3G wireless stan-
dards in a thermal budget commensurate with the embedded mo-
bile processing domain. It became apparent that the idea was even
more general than we had intended. At this point we investigated
more conventional DSP algorithms and found that the generality
claim was in fact true. The result is an architecture that is pow-
erful enough to support the severe real-time processing demands
of 3G cellular algorithms, yet flexible enough to be utilized for a
broad range of other signal processing duties. The energy-delay
product of this design has been shown to improve on that of the
Intel XScale by three to four orders of magnitude and is within
one to two orders of magnitude of a custom ASIC. The architec-
ture is capable of a sustained performance improvement of 5-80
times that of a general purpose embedded processor.

The current problem with this effort is that manually mapping
and scheduling applications onto the cluster is tedious and time
consuming. The next step, to automate this process, is in progress.

5. REFERENCES

[1] J. Rabaey, “Beyond the third generation of wireless communi-
cations, keynote presentation,” in IEEE International confer-
ence on Information and Communications security, Dec 1999.

[2] L. Harju, M. Kuulusa, and J. Nurmi, “A flexible Rake Receiver
Architecture for WCDMA mobile terminals,” IEEE Workshop
on Signal Processing Systems, pp. 177–182, Oct 2002.

[3] M. Marandian, J. Fridman, Z. Zvonar, and M. Salehi, “Per-
formance analysis of turbo decoder for 3GPP standard using
the sliding window algorithm,” Personal, Indoor and Mobile
Radio Communications, vol. 2, pp. 127–131, 2001.

[4] R. Gonzalez and M. Horowitz, “Energy dissipation in general
purpose processors,” IEEE Journal of Solid State Circuits, pp.
1277–1284, Sept 1996.

[5] Bickerstaff, M. Garrett, D. Prokop, T. Thomas, C. Widdup,
B. Gongyu Zhou Nicol, and C. Ran-Hong Yan, “A uni-
fied turbo/viterbi channel decoder for 3GPP mobile wireless
in 0.18um CMOS,” IEEE International Solid-State Circuits
Conference, pp. 124–451, 2002.

[6] S. Morris, “Signal processing demands shape 3G Base Sta-
tions,” Wireless Systems Design Magazine, Nov 1999.

[7] G. Masera, G. Piccinnini, M.R. Rock, and M. Zamboni,
“VLSI architectures for turbo codes,” IEEE Transactions on
VLSI Systems, Sept 1999.

[8] “Channel card design for 3G infrastructure equipment,” Tech.
Rep., SPRY048, Texas Instruments, 2003.

[9] H. Blume, H. Hubert, H. T. Feldkamper, and T.G. Noll,
“Model-based exploration of the design space for heteroge-
neous systems on chip,” in IEEE International Conference on
Application-specific Systems, Architectures and Processors,
July 2002, pp. 29–40.

