
Impulse: Building a Smarter Memory Controller

John Carter, Wilson Hsieh, Leigh Stoller, Mark Swansony, Lixin Zhang,
Erik Brunvand, Al Davis, Chen-Chi Kuo, Ravindra Kuramkote,

Michael Parker, Lambert Schaelicke, Terry Tateyama

Department of Computer ScienceyIntel Corporation
University of Utah Dupont, WA
Salt Lake City, UT

Abstract

Impulse is a new memory system architecture that adds
two important features to a traditional memory controller.
First, Impulse supports application-specific optimizations
through configurable physical address remapping. By
remapping physical addresses, applications control how
their data is accessed and cached, improving their cache
and bus utilization. Second, Impulse supports prefetching
at the memory controller, which can hide much of the la-
tency of DRAM accesses.

In this paper we describe the design of the Impulse ar-
chitecture, and show how an Impulse memory system can
be used to improve the performance of memory-bound pro-
grams. For the NAS conjugate gradient benchmark, Impulse
improves performance by 67%. Because it requires no mod-
ification to processor, cache, or bus designs, Impulse can be
adopted in conventional systems. In addition to scientific
applications, we expect that Impulse will benefit regularly
strided, memory-bound applications of commercial impor-
tance, such as database and multimedia programs.

1. Introduction

Since 1985, microprocessor performance has improved
at a rate of 60% per year. In contrast, DRAM latencies have
improved by only 7% per year, and DRAM bandwidths by
only 15-20% per year. The result is that the relative per-
formance impact of memory accesses continues to grow. In
addition, as instruction issue rates continue to increase, the
demand for memory bandwidth increases proportionately
(and possibly even superlinearly) [7, 12]. For applications
that do not exhibit sufficient locality, these trends make it
increasingly hard to make effective use of the tremendous
processing power of modern microprocessors. It is an un-
fortunate fact that many important applications (e.g., sparse

matrix, database, signal processing, multimedia, and CAD
applications) do not exhibit such high degrees of locality.
In the Impulse project, we are attacking this problem by de-
signing and building a memory controller that is more pow-
erful than conventional ones.

The Impulse memory controller has two features that are
not present in current memory controllers. First, the Im-
pulse controller supports an optional extra stage of address
translation: as a result, data can have its addresses remapped
without copying. This feature allows applications to control
how their data is accessed and cached, in order to improve
bus and cache utilization. Second, the Impulse controller
supports prefetching at the memory controller, which re-
duces the effective latency to memory. Prefetching at the
memory controller is important for reducing the latency of
Impulse’s address translation, and is also a useful optimiza-
tion for non-remapped data.

The novel feature in Impulse is the addition of another
level of address translation at the memory controller. The
key insight exploited by this feature is that unused “phys-
ical” addresses can undergo translation to “real” physical
addresses at the memory controller. An unused physical ad-
dress is a legitimate address, but one that is not backed by
DRAM. For example, in a system with 4GB of physical ad-
dress space with only 1GB of installed DRAM, there is 3GB
of unused physical address space. We call these unused
addressesshadow addresses, and they constitute ashadow
address spacethat is mapped to physical memory by the
Impulse controller. By giving applications control (medi-
ated by the OS) over the use of shadow addresses, Impulse
supports application-specific optimizations that restructure
data. Using Impulse requires modifications to software: ap-
plications (or compilers) and operating systems. Using Im-
pulse does not require any modification to other hardware
(either processors, caches, or buses).

As a simple example of how Impulse memory remapping
can be used, consider a program that accesses the diagonal

Cache

Impulse
Controller

Conventional
Memory System

Impulse
Memory System

Physical
Pages

wasted bus bandwidth

Figure 1. Using Impulse to remap the diagonal of a dense
matrix into a dense cache line. The black boxes represent
data on the diagonal, whereas the gray boxes represent non-
diagonal data.

elements of a matrixA. The physical layout of part of the
data structureA is shown on the right-hand side of Figure 1.
On a conventional memory system, each time the processor
accesses a new diagonal element (e.g.,A[i][i]), it must
request a full cache line of contiguous physical memory. On
modern systems, a cache line contains 32–128 bytes of data,
of which the program accesses only a single word. Such an
access is shown in the bottom of Figure 1.

On an Impulse memory system, an application can con-
figure the memory controller to export a dense shadow
space alias that contains just the diagonal elements, and
have the OS map a new set of virtual addresses to this
shadow memory. The application can then access the di-
agonal elements via the new virtual alias. Such an access is
shown in the top half of Figure 1. The details of how Im-
pulse performs the remapping is described in Section 2.1.

Remapping the array diagonal to a dense alias results in
several performance benefits. First, the processor achieves a
higher cache hit rate, because several diagonal elements are
loaded into the caches at once. Second, the processor con-
sumes less bus bandwidth, because non-diagonal elements
are not sent over the bus. Finally, the processor makes more
effective use of cache space, because the non-diagonal ele-
ments are not sent. In general, the flexibility that Impulse
supports allows applications to customize addressing to fit
their needs.

The second important feature of the Impulse memory
controller is that it supports prefetching. We include a small
amount of SRAM on the Impulse memory controller to
store data prefetched from the DRAM’s. For non-remapped
data, prefetching is useful for reducing the latency of se-

quentially accessed data. We show that controller-based
prefetching of non-remapped data performs as well as a sys-
tem that uses simple L1 cache prefetching. For remapped
data, prefetching enables the controller to hide the cost of
remapping: some remappings can require multiple DRAM
accesses to fill a single cache line. With both prefetching
and remapping, an Impulse controller greatly outperforms
conventional memory systems.

In recent years, a number of hardware mechanisms have
been proposed to address the problem of increasing mem-
ory system overhead. For example, researchers have eval-
uated the prospects of making the processor cache config-
urable [25, 26], adding computational power to the mem-
ory system [14, 18, 24], and supporting stream buffers [13,
16]. All of these mechanisms promise significant perfor-
mance improvements; unfortunately, most require signifi-
cant changes to processors, caches, or memories, and thus
have not been adopted in current systems. Impulse supports
similar optimizations, but its hardware modifications are lo-
calized to the memory controller.

We simulated the impact of Impulse on two benchmarks:
the NAS conjugate gradient benchmark and a dense matrix-
matrix product kernel. Although this paper only evaluates
two scientific kernels, we expect that Impulse will be useful
for optimizing non-scientific applications as well. Some of
the optimizations that we describe are not conceptually new,
but the Impulse project is the first system that will provide
hardware support for them in general-purpose computer
systems. For both benchmarks, the use of Impulse opti-
mizations significantly improved performance compared to
a conventional memory controller. In particular, we found
that a combination of address remapping and controller-
based prefetching improved the performance of conjugate
gradient by 67%.

2. Impulse Architecture

To illustrate how the Impulse memory controller (MC)
works, we describe in detail how it can be used to optimize
the simple diagonal matrix example described in Section 1.
We describe the internal architecture of the Impulse mem-
ory controller, and explain the kinds of address remappings
that it currently supports.

2.1. Using Impulse

Figure 2 illustrates the address transformations that Im-
pulse performs to remap the diagonal of a dense matrix.
The top half of the figure illustrates how the diagonal ele-
ments are accessed on a conventional memory system. The
original dense matrix,A, occupies three pages of the vir-
tual address space. Accesses to the diagonal elements of
A are translated into accesses to physical addresses at the

MMU

Pseudo
VirtualShadow

Memory
Virtual

Memory Memory
Physical

Virtual
Memory Memory

Physical

diagonal[]

A[]

MMU

MMU

MMU

Impulse translations

Memory

Figure 2. Using Impulse to remap memory: The transla-
tion on the top of the figure is the standard translation per-
formed by an MMU. The translation on the bottom of the
figure is the translation performed on an Impulse system.
The processor translates virtual aliases into what it thinks
are physical addresses; however, these physical addresses
are reallyshadow addresses. The Impulse MC maps the
shadow addresses intopseudo-virtual addresses, and then
to physical memory.

processor. Each access to a diagonal element loads an en-
tire cache line of data, but only the diagonal element is ac-
cessed, which wastes bus bandwidth and cache capacity.

The bottom half of the figure illustrates how the diagonal
elements ofA are accessed using Impulse. The application
reads from a data structure that the OS has remapped to a
shadow alias for the matrix diagonal. When the processor
issues the read for that alias over the bus, the Impulse con-
troller gathers the data in the diagonal into a single cache
line, and sends that data back to the processor. Impulse sup-
ports prefetching of memory accesses, so that the latency of
the gather can be hidden.

The operating system remaps the diagonal elements to a
new alias,diagonal , as follows:

1. The application allocates a contiguous range of virtual
addresses large enough to map the diagonal elements
of A, and asks the OS to map it through shadow mem-
ory to the actual elements. This range of virtual ad-
dresses corresponds to the new variablediagonal .
To improve L1 cache utilization, an application can
allocate virtual addresses with appropriate alignment
and offset characteristics.

2. The OS allocates a contiguous range of shadow ad-

system bus DRAM

L1CPU

MMU

DRAM

PgTbl

d

e

f

c
a

DRAM Scheduler/Cache

AddrCalc

SD
es

csb

h

g

L2

Impulse memory controller

Figure 3. The Impulse memory architecture. The arrows
indicate how data flows within an Impulse memory system.

dresses large enough to contain the diagonal elements
of A. The operating system allocates shadow addresses
from a pool of physical addresses that do not corre-
spond to real DRAM addresses.

3. The OS downloads to the memory controller a map-
ping function from the shadow addresses to offsets
within pseudo-virtual memory space. An address
space that mirrors virtual space is necessary to be able
to remap data structures that are larger than a page.
We use a pseudo-virtual space in order to save address
bits. In our example, the mapping function involves
a simplebaseandstride function — other remapping
functions supported by the current Impulse model are
described in Section 2.3.

4. The OS downloads to the memory controller a set of
page mappings for pseudo-virtual space forA

5. The OS maps the virtual aliasdiagonal to the newly
allocated shadow memory, flushes the original address
from the caches, and returns.

Currently, we have modified application kernels by hand to
perform the system calls to remap data; we are exploring
compiler algorithms similar to those used by vectorizing
compilers to automate the process. Both shadow addresses
and virtual addresses are system resources, so the operating
system must manage their allocation and mapping. We have
designed a set of system calls that allow applications to use
Impulse without violating inter-process protection.

2.2. Hardware

Figure 3 illustrates Impulse’s memory architecture, in-
cluding the internal organization of the memory controller
(MC). The major functional units of the MC are:

� a small number of shadow space descriptors (SDesc) -
currently we model eight despite needing no more than
three for the applications we simulated,

� a simple ALU that remaps shadow addresses to
pseudo-virtual addresses (AddrCalc), based on infor-
mation stored in shadow descriptors,

� logic to perform page-grained remapping of pseudo-
virtual addresses to physical addresses backed by
DRAM (PgTbl), and

� a DRAM scheduler that will optimize the dynamic or-
dering of accesses to the actual DRAM chips.

In Figure 3, an address first appears on the memory bus
(a). This address can be either a physical or a shadow ad-
dress. If it is physical, it is passed directly to the DRAM
scheduler. Otherwise, the matching shadow descriptor is se-
lected (b). The remapping information stored in the shadow
descriptor is used to translate the shadow address into a
set of pseudo-virtual addresses using a simple ALU (Ad-
drCalc) (c). Pseudo-virtual addresses are necessary for Im-
pulse to be able to map data structures that span multiple
pages. These addresses are translated into real physical ad-
dresses (d) using a page table (an on-chip TLB backed by
main memory), and passed to the DRAM scheduler (e). The
DRAM scheduler orders and issues the reads (f), and sends
the data back to the shadow descriptors (g). Finally, the ap-
propriate shadow descriptor assembles the data into cache
lines and sends it over the bus (h).

An important design goal of Impulse is that it should
not slow down accesses to non-shadow physical memory,
because not all programs will utilize Impulse’s remapping
functions. Even programs that do remap data will probably
contain significant numbers of references to non-remapped
data. Therefore, our design tries to avoid adding latency to
“normal” accesses to memory. In addition, the Impulse con-
troller has a 2K buffer for prefetching non-remapped data
using a simple one-block lookahead prefetcher. As we show
in Section 4, using this simple prefetch mechanism at the
controller is competitive with L1 cache prefetching.

Because accesses to remapped memory require a poten-
tially complex address calculation, it is also important that
the latency of accesses to remapped memory be kept as low
as possible. Therefore, the Impulse controller is designed to
support prefetching. Each shadow descriptor has a 256-byte
buffer that can be used to prefetch shadow memory.

We also expect that the controller will be able to sched-
ule remapped memory accesses so that the actual DRAM
accesses will occur in parallel. We are designing a low-
level DRAM scheduler designed to exploit locality in paral-
lelism between DRAM accesses. First, it will reorder word-
grained requests to exploit DRAM page locality. Second,
it will schedule requests to exploit bank-level parallelism.

Third, it will give priority to requests from the processor
over requests that originate in the MC. The design of our
DRAM scheduler is not yet complete. Therefore, the simu-
lation results reported in this paper assume a simple sched-
uler that issues accesses in order.

2.3. Software Interface

The initial design for Impulse supports several forms of
shadow-to-physical remapping:

� Direct mapping: Impulse allows applications to map a
shadow page directly to a physical page. By remap-
ping physical pages in this manner, applications can
recolor physical pages without copying as described in
Section 3.1. In another publication we have described
how direct mappings in Impulse can be used to form
superpages from non-contiguous physical pages [21].

� Strided physical memory: Impulse allows applications
to map a region of shadow addresses to a strided data
structure. That is, a shadow address at offsetsoffset
on a shadow region is mapped to a pseudo-virtual ad-
dresspvaddr+ stride � soffset, wherepvaddr is the
starting address of the data structure’s pseudo-virtual
image. By mapping sparse, regular data items into
packed cache lines, applications reduce their bus band-
width consumption and the cache footprint of the data.
An example of such an optimization, tile remapping, is
described in Section 3.2.

� Scatter/gather using an indirection vector: Impulse al-
lows applications to map a region of shadow addresses
to a data structure through an indirection vector. That
is, a shadow address at offsetsoffsetin a shadow re-
gion is mapped to a pseudo-virtual addresspvaddr+
stride� vector[soffset]. By mapping sparse, indirectly
addressed data items into packed cache lines, appli-
cations reduce their bus bandwidth consumption, the
cache footprint of the data, and the number of loads
they must issue. An example of this optimization for
conjugate gradient is described in Section 3.1.

In order to keep the controller hardware simple and fast,
Impulse restricts the remappings. For example, in order to
avoid the necessity for a divider in the controller, strided
mappings must ensure that a strided object has a size that
is a power of 2. Also, we assume that an application (or
compiler/OS) that uses Impulse ensures data consistency
through appropriate flushing of the caches.

3. Impulse Optimizations

In this section we describe how Impulse can be used to
optimize two scientific application kernels: sparse matrix-

ROWS

for i := 1 to n do

 sum := 0

 for j := ROWS[i] to ROWS[i+1]-1 do

 sum += DATA[j] * x[COLUMN[j]]

 b[i] := sum;

2 4 6 8 3 8

A

B

F

A B C D E F

1

2 C D

E5

Z

X

W

V

T

Y

U

S

* =

A x b

DATA

COLUMN

Figure 4. Conjugate gradient’s sparse matrix-vector prod-
uct. The matrixA is encoded using three dense arrays:
DATA, ROWS, andCOLUMN. The contents ofA are inDATA.
ROWS[i] indicates where theith row begins inDATA.
COLUMN[i] indicates which column ofA the element
stored inDATA[i] comes from.

vector multiply (SMVP) and dense matrix-matrix product.
We apply two techniques to optimize SMVP: vector-style
scatter/gather at the memory controller and no-copy physi-
cal page coloring. We apply a third optimization, no-copy
tile remapping, to dense matrix-matrix product.

3.1. Sparse Matrix-Vector Product

Sparse matrix-vector product is an irregular computa-
tional kernel that is critical to many large scientific algo-
rithms. For example, most of the time in conjugate gradi-
ent [3] or in the Spark98 earthquake simulations [17] are
spent performing SMVP.

To avoid wasting memory, sparse matrices are generally
encoded so that only non-zero elements and correspond-
ing index arrays are stored. For example, the Class A in-
put matrix for the NAS Conjugate Gradient kernel (CG-
A) is 14,000 by 14,000, and contains only 2.19 million
non-zeroes. Although sparse encodings save tremendous
amounts of memory, sparse matrix codes tend to suffer from
poor memory performance, because data must be accessed
through indirection vectors. When we ran CG-A on an SGI
Origin 2000 processor (which has a 2-way, 32K L1 cache
and a 2-way, 4MB L2 cache), the L1 cache hit rate was only
63%, and the L2 cache hit rate was only 92%.

Sparse matrix-vector product is illustrated in Figure 4.

Each iteration multiplies a row of the sparse matrixA with
the dense vectorx . This code performs poorly on conven-
tional memory systems, because the accesses tox are both
indirect (via theCOLUMNindex vector) and sparse. When
x is accessed, a conventional memory system will fetch a
cache line of data, of which only one element is used. Be-
cause of the large sizes ofx , COLUMN, andDATAand the
sparse nature of accesses tox during each iteration of the
loop, there will be very little reuse in the L1 cache. Each
element ofCOLUMNor DATAis used only once, and almost
every access tox results in an L1 cache miss. A large L2
cache can provide reuse ofx , if physical data layouts can
be managed to prevent L2 cache conflicts betweenA andx .
Unfortunately, conventional systems do not typically pro-
vide mechanisms for managing physical layout.

Scatter/gather. The Impulse memory controller sup-
ports scatter/gather of physical addresses through indirec-
tion vectors. Vector machines, such as the CDC STAR-
100 [11], have provided scatter/gather capabilities in hard-
ware, but such mechanisms have been provided at the pro-
cessor. Because Impulse allows scatter/gather to occur at
the memory, it can be used to reduce memory traffic over
the bus. In addition, Impulse will allow conventional CPU’s
to take advantage of scatter/gather functionality.

The CG code on Impulse would be:

setup x’, where x’[k] = x[COLUMN[k]]
for i := 1 to n do

sum := 0
for j := ROWS[i] to ROWS[i+1]-1 do

sum += DATA[j] * x’[j]
b[i] := sum

The first line asks the operating system to allocate a
new region of shadow space, mapx’ to that shadow re-
gion, and have the memory controller map the elements
of the shadow regionx’[k] to the physical memory for
x[COLUMN[k]] . After the remapped array has been set
up, the code accesses the remapped version of the gathered
structure (x’) rather the original structure (x).

This optimization improves the performance of sparse
matrix-vector product in two ways. First, spatial local-
ity is improved in the L1 cache. Since the memory con-
troller packs the gathered elements into cache lines, the
cache lines contain 100% useful data, rather than only one
useful element each. Second, fewer memory instructions
need to be issued. Since the read of the indirection vec-
tor (COLUMN[]) occurs at the memory controller, the pro-
cessor does not need to issue the read. Note that the use
of scatter/gather at the memory controller reduces temporal
locality in the L2 cache. The reason is that the remapped
elements ofx’ cannot be reused, since all of the elements
have different addresses.

Page recoloring. The Impulse memory controller sup-
ports dynamic physical page recoloring through direct
remapping of physical pages. Physical page recoloring

changes the physical addresses of pages so that reusable
data is mapped to a different part of a physically-addressed
cache than non-reused data By performing page recolor-
ing, conflict misses can be eliminated. On a conventional
machine, physical page recoloring is expensive to exploit.
(Note that virtual page recoloring has been explored by
other authors [5].) The cost is in copying: the only way
to change the physical address of data is to copy the data
between physical pages. Impulse allows pages to be recol-
oredwithout copying.

For sparse matrix-vector product, thex vector is reused
within an iteration, while elements of theDATA, ROW, and
COLUMNvectors are used only once each in each itera-
tion. As an alternative to scatter/gather ofx at the mem-
ory controller, Impulse can be used to physically recolor
pages so thatx does not conflict in the L2 cache with the
other data structures. For example, in the CG-A bench-
mark, x is over 100K bytes: it would not fit in most pro-
cessors’ L1 caches, but would fit in many L2 caches. Im-
pulse can be used to remapx to pages that occupy most
of the physically-indexed L2 cache, and can remapDATA,
ROWS, andCOLUMNSto a small number of pages that do
not conflict withx . In effect, we can use a small part of
the L2 cache as a stream buffer [16] forDATA, ROWS, and
COLUMNS.

3.2. Tiled Matrix Algorithms

Dense matrix algorithms form an important class of sci-
entific kernels. For example, LU decomposition and dense
Cholesky factorization are dense matrix computational ker-
nels. Such algorithms are “tiled” (or “blocked”) in order to
increase their efficiency. That is, the iterations of tiled al-
gorithms are reordered so as to improve their memory per-
formance. The difficulty with using tiled algorithms lies
in choosing an appropriate tile size [15]. Because tiles
are non-contiguous in the virtual address space, it is diffi-
cult to keep them from conflicting with each other (or with
themselves) in the caches. To avoid conflicts, either tile
sizes must be kept small (which makes inefficient use of the
cache), or tiles must be copied into non-conflicting regions
of memory (which is expensive).

Impulse provides another alternative to removing cache
conflicts for tiles. We use the simplest tiled algorithm, dense
matrix-matrix product, as an example of how Impulse can
be used to improve the behavior of tiled matrix algorithms.
Assume that we want to computeC = A�B. We want to
keep the current tile of theC matrix in the L1 cache as we
compute it. In addition, since the same row of theA matrix
is used multiple times to compute a row of theC matrix, we
would like to keep the active row ofA in the L2 cache.

Impulse allows base-stride remapping of the tiles from
non-contiguous portions of memory into contiguous tiles of

shadow space. As a result, Impulse makes it easy for the
OS to virtually remap the tiles, since the physical footprint
of a tile will match its size. If we use the OS to remap
the virtual address of a matrix tile to its new shadow alias,
we can then eliminate interference in a virtually-indexed L1
cache. First, we divide the L1 cache into three segments. In
each segment we keep a tile: the current output tile from
C, and the input tiles fromA andB. When we finish with
one tile, we remap the virtual tile to the next physical tile by
using Impulse. In order to maintain cache consistency, we
must purge theA andB tiles and flush theC tiles from the
caches whenever they are remapped. As Section 4.2 shows,
these costs are minor.

4. Performance

We have performed a preliminary simulation study of
Impulse using the Paint simulator [20]: it models a varia-
tion of a 120 MHz, single-issue, HP PA-RISC 1.1 processor
running a BSD-based microkernel, and a 120 MHz HP Run-
way bus. The 32K L1 data cache is non-blocking, single-
cycle, write-back, write-around, virtually indexed, physi-
cally tagged, and direct mapped with 32-byte lines. The
256K L2 data cache is non-blocking, write-allocate, write-
back, physically indexed and tagged, 2-way set-associative,
and has 128-byte lines. Instruction caching is assumed to be
perfect. A hit in the L1 cache has a minimum latency of one
cycle; a hit in the L2 cache, seven cycles; an access to mem-
ory, forty cycles. The TLB’s are unified I/D, single-cycle,
and fully associative, with a not-recently-used replacement
policy. In addition to the main TLB, a single-entry micro-
ITLB holding the most recent instruction translation is also
modeled. Kernel code and data structures are mapped using
a singleblock TLBentry that is not subject to replacement.

In our experiments we measure the performance benefits
of using Impulse to remap physical addresses, as described
in Section 3. We also measure the benefits of using Impulse
to prefetch data. When prefetching is turned on for Im-
pulse, both shadow and non-shadow accesses is prefetched.
As a point of comparison, we compare controller prefetch-
ing against a form of processor-side prefetching: hardware
next-line prefetching into the L1 cache, such as that used
in the HP PA 7200 [8]. We show that controller prefetch-
ing is competitive with this simple form of processor-
side prefetching, and that a combination of controller- and
cache-based prefetching is best.

In the following sections we show how Impulse’s remap-
pings can be used to support optimizations on sparse matrix-
vector product (SMVP) and dense matrix-matrix product.
Scatter/gather remapping improves the L1 cache perfor-
mance of SMVP. Alternatively, page remapping can be used
to recolor the physical pages of SMVP data for the L2
cache. Finally, base-stride remapping can be used to remap

Standard Prefetching
Impulse L1 cache both

Conventional memory system
Time 2.81 2.69 2.51 2.49

L1 hit ratio 64.6% 64.6% 67.7% 67.7%
L2 hit ratio 29.9% 29.9% 30.4% 30.4%

mem hit ratio 5.5% 5.5% 1.9% 1.9%
avg load time 4.75 4.38 3.56 3.54

speedup — 1.04 1.12 1.13
Impulse with scatter/gather remapping

Time 2.11 1.68 1.51 1.44
L1 hit ratio 88.0% 88.0% 94.7% 94.7%
L2 hit ratio 4.4% 4.4% 4.3% 4.3%

mem hit ratio 7.6% 7.6% 1.0% 1.0%
avg load time 5.24 3.53 2.19 2.04

speedup 1.33 1.67 1.86 1.95
Impulse with page recoloring

Time 2.70 2.57 2.39 2.37
L1 hit ratio 64.7% 64.7% 67.7% 67.7%
L2 hit ratio 30.9% 31.0% 31.3% 31.3%

mem hit ratio 4.4% 4.3% 1.0% 1.0%
avg load time 4.47 4.05 3.28 3.26

speedup 1.04 1.09 1.18 1.19

Table 1. Simulated results for the NAS Class A conjugate
gradient benchmark, with various memory system configu-
rations. Times are in billions of cycles; the hit ratios are the
number of loads that hit in the corresponding level of the
memory hierarchy divided by total loads; the average load
time is the average number of cycles that a load takes; the
speedup is the “Conventional, no prefetch” time divided by
the time for the system being compared.

dense matrix tiles into contiguous shadow addresses.

4.1. Sparse Matrix-Vector Product

To evaluate the performance benefits that Impulse en-
ables, we use the NAS Class A conjugate gradient bench-
mark as our benchmark for sparse matrix-vector product.
Table 1 illustrates the performance of an Impulse system on
that benchmark, under various memory system configura-
tions. In the following two sections we evaluate the per-
formance of scatter/gather remapping and page recoloring,
respectively. Note that our use of “L2 cache hit ratio” uses
the total number of loads (not the total number of L2 cache
accesses) as the divisor to make it easier to compare the ef-
fects of the L1 and L2 caches on memory accesses.

Scatter/gather The first and second parts of Table 1
show that the use of scatter/gather remapping on CG-A im-

proves performance significantly. If we examine the perfor-
mance without prefetching, Impulse improves performance
by 1.33, because it increases the L1 cache hit ratio dramati-
cally. The extra cache hits are due to the fact that accesses to
the remapped vectorx’ now fetch several useful elements
of x at a time. In addition to the increase in cache hits, the
use of scatter/gather reduces the total number of loads is-
sued, since the indirection load occurs at the memory. The
reduction in the total number of loads outweighs the fact
that scatter/gather increases the average cost of a load: al-
most one-third of the cycles saved are due to this factor.
Finally, despite the drop in L2 cache hit ratio, using scat-
ter/gather still improves performance.

The combination of scatter-gather remapping and
prefetching is even more effective in improving perfor-
mance: the speedup is 1.67. Prefetching improves the effec-
tiveness of scatter/gather: the average time for a load drops
from 5.24 cycles to 3.53 cycles. Even though the cache hit
ratios do not change, CG-A runs significantly faster because
Impulse hides the latency of the memory system.

While controller-based prefetching was added to Im-
pulse primarily to hide the latency of scatter/gather opera-
tions, it is useful on its own. Without scatter/gather support,
controller-based prefetching improves performance by 4%,
compared to the 12% performance improvement that can be
achieved by performing a simple one-block-ahead prefetch-
ing mechanism at the L1 cache. However, controller-based
prefetching requires no changes to the processor core, and
thus can benefit processors with no integrated hardware
prefetching. Controller-based prefetching improves perfor-
mance by reducing the effective cost of accessing DRAM
when the right data is fetched into the controller’s 2-kilobyte
SRAM prefetch cache.

Page recoloringThe first and third sections of Table 1
show that the use of page recoloring improves performance
on CG-A. We color the vectorsx , DATA, andCOLUMNso
that they do not conflict in the L2 cache. The multiplicand
vectorx is reused during SMVP, so it is most important to
keep it in the L2 cache. Therefore, we color it to occupy the
first half of the L2 cache. We want to keep the two other
large data structures,DATAandCOLUMN, from conflicting
as well. As a result, we divide the second half of the L2
cache into two quadrants and then colorDATAandCOLUMN
so that they each occupy one of these quadrants.

Without prefetching, the speedup of using page recolor-
ing is 1.04. The improvement occurs because we remove
one fifth of the original memory references hit in the L2
cache with Impulse. With the addition of prefetching at the
controller, the speedup increases to 1.09. Page recoloring
consistently reduces the cost of memory accesses. When
comparing controller prefetching with L1 cache prefetch-
ing, the effects are similar to those with scatter/gather. Con-
troller prefetching alone is about half as effective as either

L1 cache prefetching or the combination of the two.
Although page recoloring does not achieve as great a

speedup as scatter/gather remapping, it does provide use-
ful speedups. In addition, page recoloring can probably be
applied in more applications than scatter/gather (or other
fine-grained types of remappings).

4.2. Dense Matrix-Matrix Product

This section examines the performance benefits of tile
remapping for matrix-matrix product, and compares the
results to software tile copying. Because Impulse places
alignment restrictions on remapping, remapped tiles must
be aligned to L2 cache line boundaries, which adds the fol-
lowing constraints to our matrices:

� Tile sizes must be a multiple of a cache line. In our
experiments, this size is 128 bytes. This constraint is
not overly limiting, especially since it makes the most
efficient use of cache space.

� Arrays must be padded so that tiles are aligned to 128
bytes. Compilers can easily support this constraint:
similar padding techniques have been explored in the
context of vector processors [6].

Table 2 illustrates the results of our tiling experiments.
The baseline is the conventional no-copy tiling. Software
tile copying and tile remapping both outperform the base-
line code by more than 95%, unsurprisingly. The im-
provement in performance is primarily due to the difference
in caching behavior: both copying and remapping more
than double the L1 cache hit rate. As a result, the aver-
age memory access time is approximately one cycle! Im-
pulse tile remapping is slightly faster than tile copying: the
system calls for using Impulse, and the associated cache
flushes/purges, are faster than copying tiles.

Note that this comparison between conventional and Im-
pulse copying schemes is conservative for several reasons.
Copying works particularly well on matrix product, because
the number of operations performed on a tile isO(n3),
whereO(n2) is the size of a tile. Therefore, the overhead
of physical copying is fairly low. For algorithms where the
reuse of the data is lower (or where the tiles are larger), the
relative overhead of copying will be greater. In addition,
our physical copying experiment avoids cross-interference
between active tiles in both the L1 and L2 cache. Other au-
thors have found that the performance of copying can vary
greatly with matrix size, tile size, and cache size [22]. Be-
cause Impulse remaps tiles without copying, we expect that
tile remapping using Impulse will not be sensitive to cross-
interference between tiles. Finally, as caches (and therefore
tiles) grow larger, the cost of copying grows, whereas the
cost of tile remapping does not.

Standard Prefetching
Impulse L1 cache both

Conventional memory system
Time 2.57 2.51 2.58 2.52

L1 hit ratio 49.0% 49.0% 48.9% 48.9%
L2 hit ratio 43.0% 43.0% 43.4% 43.5%

mem hit ratio 8.0% 8.0% 7.7% 7.6%
avg load time 6.37 6.18 6.44 6.22

speedup — 1.02 1.00 1.02
Conventional memory system with software tile copying

Time 1.32 1.32 1.32 1.32
L1 hit ratio 98.5% 98.5% 98.5% 98.5%
L2 hit ratio 1.3% 1.3% 1.4% 1.4%

mem hit ratio 0.2% 0.2% 0.1% 0.1%
avg load time 1.09 1.08 1.06 1.06

speedup 1.95 1.95 1.95 1.95
Impulse with tile remapping

Time 1.30 1.29 1.30 1.28
L1 hit ratio 99.4% 99.4% 99.4% 99.6%
L2 hit ratio 0.4% 0.4% 0.4% 0.4%

mem hit ratio 0.2% 0.2% 0.2% 0.0%
avg load time 1.09 1.07 1.09 1.03

speedup 1.98 1.99 1.98 2.01

Table 2. Simulated results for tiled matrix-matrix product.
Times are in billions of cycles; the hit ratios are the number
of loads that hit in the corresponding level of the memory
hierarchy divided by total loads; the average load time is
the average number of cycles that a load takes; the speedup
is the “Conventional, no prefetch” time divided by the time
for the system being compared. The matrices are 512 by
512, with 32 by 32 tiles.

All forms of prefetching performed approximately
equally well for this application. Because of the effective-
ness of copying and tile remapping, prefetching makes al-
most no difference. When the optimizations are not be-
ing used, controller prefetching improves performance by
about 2%. L1 cache prefetching actually hurts performance
slightly, due to the very low hit rate in the L1 cache — the
effect is that prefetching causes too much contention at the
L2 cache.

5. Related Work

A number of projects have proposed modifications to
conventional CPU or DRAM designs to overcome mem-
ory system performance: supporting massive multithread-
ing [2], moving processing power on to DRAM chips [14],

building programmable stream buffers [16], or developing
configurable architectures [26]. While these projects show
promise, it is now almost impossible to prototype non-
traditional CPU or cache designs that can perform as well
as commodity processors. In addition, the performance of
processor-in-memory approaches are handicapped by the
optimization of DRAM processes for capacity (to increase
bit density) rather than speed.

We briefly describe the most closely related architecture
research projects. The Morph architecture [26] is almost
entirely configurable: programmable logic is embedded in
virtually every datapath in the system. As a result, opti-
mizations similar to those that we have described are possi-
ble using Morph. The primary difference between Impulse
and Morph is that Impulse is a simpler design that current
architectures can take advantage of.

The RADram project at UC Davis is building a mem-
ory system that lets the memory perform computation [18].
RADram is a PIM (“processor-in-memory”) project simi-
lar to IRAM [14], where the goal is to put processors close
to memory. The Raw project at MIT [24] is an even more
radical idea, where each IRAM element is almost entirely
reconfigurable. In contrast to these projects, Impulse does
not seek to put an entire processor in memory, since DRAM
processes are substantially slower than logic processes.

Several researchers have proposed different forms of
hardware to improve the performance of applications that
access memory using regular strides (vector applications,
for example). Jouppi proposed the notion of a stream
buffer [13], which is a device that detects strided accesses
and prefetches along those strides. McKee et al. [16] pro-
posed a programmable variant of the stream buffer that al-
lows applications to explicitly specify when they make vec-
tor accesses. Both forms of stream buffer allow applications
to improve their performance on regular applications, but
they do not support irregular applications.

Yamada [25] proposed instruction set changes to support
combined relocation and prefetching into the L1 cache. Be-
cause relocation is done at the processor in his system, no
bus bandwidth is saved. In addition, because relocation is
done on virtual addresses, the utilization of the L2 cache
cannot be improved. With Impulse, the utilization of the L2
cache can directly be improved; the operating system can
then be used to improve the utilization of the L1 cache.

A great deal of research has gone into prefetching into
the cache [19]. For example, Chen and Baer [9] describe
how a prefetching cache can outperform a non-blocking
cache. Fu and Patel [10] describe how cache prefetch-
ing can be used to improve the performance of caches on
vector machines, which is somewhat related to Impulse’s
scatter/gather optimization. Although our research is re-
lated, cache prefetching is orthogonal to Impulse’s con-
troller prefetching. In addition, we have shown that con-

troller prefetching can outperform simple forms of cache
prefetching.

One memory-based prefetching scheme, described by
Alexander and Kedem [1], can improve the performance of
some benchmarks significantly. They use a prediction table
to store up to four possible predictions for any given mem-
ory address. All four predictions are prefetched into SRAM
buffers. The size of their prediction table is kept small by
using a large prefetch block size.

Finally, the Impulse DRAM scheduler that we are de-
signing has goals that are similar to other research on dy-
namic access ordering. McKee et al. [16] show that reorder-
ing of stream accesses can be used to exploit parallelism
in multi-bank memories, as well as locality of reference in
page-mode DRAM’s. Valero et al. [23] show how reorder-
ing of strided accesses on a vector machine can be used to
eliminate bank conflicts. On Impulse, the set of addresses
to be reordered will be more complex: for example, the set
of physical addresses that is generated for scatter/gather is
much more irregular than strided vector accesses.

6. Conclusions

The Impulse project is attacking the memory bottleneck
by designing and building a smarter memory controller. The
Impulse controller requires no modifications to the CPU,
caches, or DRAM’s, and it has two forms of “smarts”:

� The controller supports application-specific physical
address remappings. This paper demonstrates that sev-
eral simple remapping functions can be used in differ-
ent ways to improve the performance of two important
scientific application kernels.

� The controller supports prefetching at the memory.
The paper demonstrates that controller-based prefetch-
ing performs as well as simple next-line prefetching in
the L1 cache.

Both of these features can be used to improve perfor-
mance. The combination of these features can result in good
speedups: using scatter/gather remapping and prefetch-
ing improves performance on the NAS conjugate gradi-
ent benchmark by 67%. Speedups should be greater on
superscalar machines (our simulation model was single-
issue), because non-memory instructions will be effectively
cheaper. That is, on superscalars, memory will be even
more of a bottleneck, and Impulse will therefore be able
to improve performance even more.

Flexible remapping support in the Impulse controller can
be used to support a variety of optimizations. Although our
simulation study has only examined two scientific kernels,
the optimizations that we have described should be usable

across a variety of memory-bound applications. In addi-
tion, despite the fact that we use conjugate gradient as our
application for two optimizations, we are not comparing op-
timizations: the two optimizations are usable on different
sets of different applications.

In previous work [21], we have shown that the Impulse
memory remappings can be used to dynamically build su-
perpages and reduce the frequency of TLB faults. Impulse
can create superpages from non-contiguous user pages:
simulations show that this optimization improves the perfor-
mance of five SPECint95 benchmark programs by 5-20%.

Finally, an Impulse memory system will be useful in
improving system-wide performance. For example, Im-
pulse can improve messaging and interprocess communi-
cation (IPC) performance. A major chore of remote IPC
is collecting message data from multiple user buffers and
protocol headers. Impulse’s support for scatter/gather can
remove the overhead of gathering data in software, which
should significantly reduce IPC overhead. The ability to
use Impulse to construct contiguous shadow pages from
non-contiguous pages means that network interfaces need
not perform complex and expensive address translation. Fi-
nally, fast local IPC mechanisms, such as LRPC [4], use
shared memory to map buffers into sender and receiver ad-
dress spaces, and Impulse could be used to support fast, no-
copy scatter/gather into shared shadow address spaces.

7. Acknowledgments

We thank Sally McKee, Massimiliano Poletto, and
Llewellyn Reese for comments on drafts of this paper, and
Chris Johnson for his assistance in providing us information
on conjugate gradient.

References

[1] T. Alexander and G. Kedem. Distributed prefetch-
buffer/cache design for high performance memory systems.
In Proc. of the Second HPCA, pp. 254–263, Feb. 1996.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The Tera computer system.
In Proc. of the 1990 ICS, pp. 272–277, Amsterdam, The
Netherlands, June 1990.

[3] D. Bailey et al. The NAS parallel benchmarks. TR RNR-
94-007, NASA Ames Research Center, Mar. 1994.

[4] B. Bershad, T. Anderson, E. Lazowska, and H. Levy.
Lightweight remote procedure call. InProc. of the 12th
SOSP, pp. 102–113, Litchfield Park, AZ, Dec. 1989.

[5] B. Bershad, D. Lee, T. Romer, and J. Chen. Avoiding con-
flict misses dynamically in large direct-mapped caches. In
Proc. of the 6th ASPLOS, pp. 158–170, Oct. 1994.

[6] P. Budnik and D. Kuck. The organization and use of paral-
lel memories.ACM Trans. on Computers, C-20(12):1566–
1569, 1971.

[7] D. Burger, J. Goodman, and A. Kagi. Memory bandwidth
limitations of future microprocessors. InProc. of the 23rd
ISCA, pp. 78–89, May 1996.

[8] K. Chan, C. Hay, J. Keller, G. Kurpanek, F. Schumacher, and
J. Zheng. Design of the HP PA 7200 CPU.Hewlett-Packard
Journal, 47(1):25–33, February 1996.

[9] T.-F. Chen and J.-L. Baer. Reducing memory latency via
non-blocking and prefetching caches. InProc. of the 5th
ASPLOS, pp. 51–61, Oct. 1992.

[10] J. Fu and J. Patel. Data prefetching in multiprocessor vec-
tor cache memories. InProc. of the 18th ISCA, pp. 54–65,
Toronto, Canada, May 1991.

[11] R. Hintz and D. Tate. Control Data STAR-100 processor
design. InIEEE COMPCON, Boston, MA, Sept. 1972.

[12] A. Huang and J. Shen. The intrinsic bandwidth requirements
of ordinary programs. InProc. of the 7th ASPLOS, pp. 105–
114, Oct. 1996.

[13] N. Jouppi. Improving direct-mapped cache performance by
the addition of a small fully associative cache and prefetch
buffers. InProc. of the 17th ISCA, pp. 364–373, May 1990.

[14] C. E. Kozyrakis et al. Scalable processors in the billion-
transistor era: IRAM. IEEE Computer, pp. 75–78, Sept.
1997.

[15] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache
performance and optimizations of blocked algorithms. In
Proc. of the 4th ASPLOS, pp. 63–74, Santa Clara, CA, Apr.
1991.

[16] S. McKee et al. Design and evaluation of dynamic access
ordering hardware. InProc. of the 10th ACM ICS, Philadel-
phia, PA, May 1996.

[17] D. R. O’Hallaron. Spark98: Sparse matrix kernels for shared
memory and message passing systems. TR CMU-CS-97-
178, CMU, Oct. 1997.

[18] M. Oskin, F. T. Chong, and T. Sherwood. Active pages: A
model of computation for intelligent memory. InProc. of the
25th ISCA, pp. 192–203, Barcelona, Spain, June 27–July 1,
1998.

[19] A. Smith. Cache memories.ACM Computing Surveys,
14(3):473–530, Sept. 1982.

[20] L. Stoller, R. Kuramkote, and M. Swanson. PAINT: PA in-
struction set interpreter. TR UUCS-96-009, Univ. of Utah
CS Dept., Sept. 1996.

[21] M. Swanson, L. Stoller, and J. Carter. Increasing TLB reach
using superpages backed by shadow memory. InProc. of the
25th ISCA, June 1998.

[22] O. Temam, E. D. Granston, and W. Jalby. To copy or not
to copy: A compile-time technique for assessing when data
copying should be used to eliminate cache conflicts. InProc.
of SC ’93, pp. 410–419, Portland, OR, Nov. 1993.

[23] M. Valero, T. Lang, J. Llaberia, M. Peiron, E. Ayguade, and
J. Navarro. Increasing the number of strides for conflict-free
vector access. InProc. of the 19th ISCA, pp. 372–381, Gold
Coast, Australia, 1992.

[24] E. Waingold, et al.˙Baring it all to software: Raw machines.
IEEE Computer, pp. 86–93, Sept. 1997.

[25] Y. Yamada. Data Relocation and Prefetching in Programs
with Large Data Sets. PhD thesis, UIUC, Urbana, IL, 1995.

[26] X. Zhang, A. Dasdan, M. Schulz, R. K. Gupta, and A. A.
Chien. Architectural adaptation for application-specific lo-
cality optimizations. InProc. of the 1997 ICCD, 1997.

